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A B S T R A C T   

The prevalence of maritime transportation and operations is increasing, leading to a gradual increase in 
drowning accidents at sea. In the context of maritime search and rescue (SAR), it is essential to develop effective 
search plans to improve the survival probability of persons-in-water (PIWs). However, conventional SAR search 
plans typically use predetermined patterns to ensure complete coverage of the search area, disregarding the 
varying probabilities associated with the PIW distribution. To address this issue, this study has proposed a 
maritime SAR vessel coverage path planning framework (SARCPPF) suitable for multiple PIWs. This framework 
comprises three modules, namely, drift trajectory prediction, the establishment of a multilevel search area 
environment model, and coverage search. First, sea area-scale drift trajectory prediction models were employed 
using the random particle simulation method to forecast drift trajectories. A hierarchical probability environ-
ment map model was established to guide the SAR of multiple SAR units. Subsequently, we integrated deep 
reinforcement learning with a reward function that encompasses multiple variables to guide the navigation 
behavior of ship agents. We developed a coverage path planning algorithm aimed at maximizing the success rates 
within a limited timeframe. The experimental results have demonstrated that our model enables vessel agents to 
prioritize high-probability regions while avoiding repeated coverage.   

1. Introduction 

With continuous development of the global economy, maritime 
transportation has emerged as the primary mode for transporting in-
ternational goods. With increasing human exploration and production 
activities at sea, offshore operations have become increasingly common. 
The marine environment is complex and dynamic, with natural disasters 
such as strong winds, high waves, storms, lightning strikes, and tsunamis 
potentially occurring. These events can increase the number of maritime 
accidents (Yang et al., 2020; Zhang et al., 2017; Zhou et al., 2020a, 
2020b; Zhou, 2022). Maritime accidents often result in drowning and 
casualties. Therefore, the timely development of effective search plans 
and improvements in the efficiency of maritime search and rescue have 
become a key research focus (Koopman, 1956a, 1956b, 1957; Peng 
et al., 2022; Rani et al., 2022; Sendner, 2022). This is critical for 
enhancing the likelihood of survival among PIWs. 

Maritime SAR comprises two essential components, that is, search 
and rescue, with search serving as a prerequisite for rescue (Carneiro, 
1988; Haga and Svanberg, 2022; IAMSAR, 2016; International Maritime 
Organization, 1979). In maritime SAR, the scarcity of search resources 
and adverse meteorological conditions are the two primary factors that 
impede the SAR process (Zhou, 2022). This forces search planners to 
minimize the search area and maximize the chances of locating the 
search object (Tapkin and Temur, 2022). Search optimization is neces-
sary to achieve maximum success rates while considering the correlation 
between time and resource constraints. Given the vulnerability of PIWs 
in maritime environments, rescuers must locate them immediately. 
Therefore, searching for PIWs includes three main tasks: (1) accurately 
and quickly predicting the drift trajectory of PIWs (Brushett et al., 2017; 
Chen et al., 2017, 2022; Wu et al., 2023); (2) determining the optimal 
search area to ensure full coverage of the possible distribution range; 
and (3) planning the search path for the SAR units and maximizing the 
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cumulative probability of success (POS) of the entire search process 
(Brown, 1980; Kratzke et al., 2010; Lin and Goodrich, 2014; Mou et al., 
2021; Washburn, 1983). 

When the rescue units arrive at their initial position in maritime SAR, 
the PIWs continue to drift owing to the combined influence of surface 
currents, sea waves, and wind. The complexity of the maritime envi-
ronment, along with numerous uncertain factors influencing the drifting 
process, amplifies the challenge of locating PIWs. It also increases the 
complexity of search path planning, thereby rendering the search more 
intricate. The prediction of drift trajectories involves the consideration 
and quantification of factors that affect the drift process, including the 
submersion scene, maritime conditions, and prediction modeling. In 
marine accidents involving PIWs, the drift characteristics vary depend-
ing on the posture, including whether the PIWs are upright, seated, or 
face down, or the load conditions (Wu et al., 2023). First proposed by 
Allen and Plourde (1999) to quantify the drift of objects, the Leeway 
model has been widely used to help plan national searches such as the 
French MOTHY (Daniel et al., 2003), Canadian CANSARP (Canadian 
Coast Guard College CANSARP Development Group Web site, 2009), 
and U.S. Coast SAROPS (Kratzke et al., 2010). Sea-based drift tests are 
widely recognized as the most commonly used and highly dependable 
approach for determining leeway coefficients (Breivik et al., 2012; 
Kasyk et al., 2021; Meng et al., 2021; Sutherland et al., 2020; Tu et al., 
2021; Wu et al., 2023; Zhu et al., 2019). 

Path-planning methods can be classified into two categories, that is, 
traditional and intelligent algorithmic. Traditional path planning algo-
rithms include the dijkstra algorithm (Dijkstra, 1959; Wang et al., 2011), 
the A* algorithm and its improved versions (Chabini and Lan, 2002; Hart 
et al., 1972; Nash and Koenig, 2013), the D* algorithm and its improved 
versions (Koenig and Likhachev, 2005; Marija and Ivan, 2011; Stentz, 
1994), the artificial potential field method (Zhang et al., 2012), the 
probabilistic path graph method (Kavraki et al., 1996), and the rapid 
exploration of random trees method (RRT) (Lavalle, 1998). Intelligent 
path planning algorithms include genetic algorithms (Prins, 2004), ant 
colony algorithms (Luo et al., 2020) and particle swarm algorithms 
(Masehian and Sedighizadeh, 2010). The reinforcement learning (RL) 
method (Wiering and Van, 2012) is an important approach in machine 
learning. In contrast with other intelligent algorithms for machine 
learning, RL focuses on the acquisition of system mapping from the 
environment to the behavior. It does not rely on labeled interactions as 
seen in supervised learning; instead, it learns from its own experiences. 
The objective of RL is not to discover hidden structures but rather to 
maximize rewards. The most used reinforcement learning methods 
include Q learning, SARSA learning, TD learning, and adaptive dynamic 
programming algorithms. Recently, significant advancements have been 
made in combining path planning with reinforcement learning (Busoniu 
et al., 2008; Xi et al., 2022; Xie et al., 2021). 

Full-coverage path planning (CPP) is a specialized technique in ro-
botics for generating a continuous path that passes through all accessible 
points within a given area with a minimum repetition rate and 
maximum coverage rate. This can be achieved using either random or 
environment-based models (Galceran and Carreras, 2013). To ensure 
comprehensive coverage, most existing CPP methods divide the target 
area and the surrounding space into cells using exact or approximate cell 
division techniques. CPPs have a wide range of applications in autono-
mous underwater vehicles (AUVs), including seabed mapping, mine 
detection, and oil spill cleanup (Englot and Hover, 2013; Shen et al., 
2019; Song et al., 2013). CPP have also been extensively used in other 
fields, including photogrammetry for unmanned aerial vehicles (UAVs), 
agriculture, fire, disaster management, and vacuum-cleaning robots 
(Fevgas et al., 2022; Galceran and Carreras, 2013; Seraj et al., 2022). 
Recently, researchers have begun to consider using reinforcement 
learning in CPP. Theile et al. (2020) used deep reinforcement learning 
algorithms for UAV CPP under different power constraints. Kyaw et al. 
(2020) used a new approach for solving CPP problems in large complex 
environments based on the traveling salesman problem (TSP) and deep 

reinforcement learning. Xi et al. (2022) integrated ocean information for 
a regional ocean simulation system combined with RL to generate AUV 
path-planning solutions. Jonnarth et al. (2023) used an end-to-end RL 
approach based on a continuous state and action space to address online 
CPP problems in unknown environments. 

In the field of maritime SAR path planning, the primary objective is 
to optimize the shortest route from the starting point to the destination 
while avoiding potential obstacles along the path (Cao et al., 2019; Li 
et al., 2021; Liu et al., 2017; Xi et al., 2022; Yang et al., 2020; Zhang 
et al., 2019, 2020). However, accurately determining the location of 
individuals in distress during maritime accidents is challenging because 
of the varying postures of PIW and complex and constantly changing 
marine environments. Therefore, it is crucial to establish a search area 
and plan a path that ensures full coverage of the entire region. This is 
known as maritime full coverage search path planning (Ai et al., 2021). 
Compared with traditional CPP problems, the maritime search and 
rescue coverage path planning (MCPP) problem presents unique chal-
lenges. In addition to achieving complete coverage of the search area 
and avoiding path overlaps and obstacles, priority must be given to 
searching for high-probability areas. 

To achieve this objective, traditional SAR operations used methods 
such as parallel track, crawl line, extended square, and sector searches 
(IAMSAR, 2016; Koopman, 1957). Recently, there has been a surge in 
research aimed at enhancing traditional search methods. Ramirez et al. 
(2011) used a collaborative model of UAVs and unmanned boats for 
maritime rescue coordination, which proved to be highly effective in 
completing rescue missions. Karakaya (2014) used an ant colony system 
optimization algorithm for route planning, aiming to efficiently cover 
the maximum search area with a limited number of UAVs. Xiong et al. 
(2021) introduced a helicopter maritime SAR path-planning method 
based on the minimum outer rectangle and k-means clustering algo-
rithm. Cho et al. (2021) presented a mixed-integer linear programming 
(MILP) model that used a hexagonal grid decomposition approach to 
efficiently generate search paths for multiple heterogeneous UAVs 
within the shortest possible timeframe. Ouelmokhtar et al. (2022) used a 
multi-objective evolutionary algorithm, namely, the non-dominated 
sorting genetic algorithm II (NSGA-II) and Pareto evolutionary strat-
egy (PAES), to solve the dual-objective CPP problem, that is, minimizing 
energy consumption and maximizing coverage, for UAV maritime 
monitoring. However, these methods have not considered the variability 
in the probability distribution of personnel in distress (PIWs) within the 
search area. Given that rescue time is critical for ensuring personnel 
safety, incorporating the PIW probability distribution can substantially 
enhance survival rates. Therefore, it is imperative to devise a path that 
maximizes SAR cumulative success rates (Ai et al., 2021; Bourgault 
et al., 2003; Cho et al., 2021; Frost, 2001; Yao et al., 2019). 

Most current studies have primarily focused on single drowning 
person scenarios in search and rescue (SAR) operations. However, it is 
crucial to consider SAR scenarios involving multiple individuals in 
varying postures, such as the upright and face down positions, particu-
larly during maritime accidents. For large-scale drowning accidents, the 
range of maritime SAR is large and requires the establishment of a 
multidimensional search and rescue area and multi-agent coverage path 
planning. One strategy for promoting collaboration among agents is to 
partition regions into distinct blocks and assign each agent a re-
sponsibility to a specific block (Xiong et al., 2021). The second approach 
is cooperative path planning for multiple agents (Binney et al., 2010; 
Cho et al., 2021; Mou et al., 2021). Throughout the search process, UAVs 
encounter several limitations, including a restricted battery life, 
vulnerability to adverse environmental conditions, limited search 
ranges, and challenges in detecting diminutive targets within water 
bodies (Hou et al., 2020). The Automatic Identification System (AIS) can 
provide information on vessels in proximity to the distress area, facili-
tating the allocation of ship resources for search and rescue operations. 
Therefore, it is imperative to investigate the planning of maritime 
coverage paths for vessel agents. 
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This study integrated deep reinforcement learning techniques into the 
planning process of SAR coverage paths. First, sea-area-scale drift tra-
jectory prediction models were used to predict the trajectories of persons 
in various sea areas. A random particle simulation algorithm was used to 
simulate the drift paths for different postures. Subsequently, a hierar-
chical probability map was established. By integrating deep reinforce-
ment learning into the design of the covering path-planning algorithm, an 
improved success rate within a limited timeframe was achieved. 

The main innovations of this study can be summarized as follows:  

(1) A maritime search and rescue vessel path planning framework 
(SARCPPF) was proposed, which includes the prediction of the 
drift trajectory at the sea area scale, establishment of a hierar-
chical environment map of the search area for persons in water 
with multiple attitudes, and planning of the covering path.  

(2) Developed a coverage path planning system with a multi- 
objective reward function based on deep reinforcement 
learning for maritime SAR. State and dynamically adjusted 
action-selection strategies applicable to specific maritime SAR 
scenarios were designed.  

(3) For specific scenarios of maritime search and rescue, deep 
learning was introduced into search path planning, which ach-
ieves the goal of maximizing the cumulative success rate of search 
and rescue and provides a demonstration case for search path 
planning in high-dimensional state and action spaces. 

The remainder of this study is organized as follows: In Section 2, the 
maritime optimal search theory, variables in search planning, and 
SARCPPF for this study are presented. Section 3 describes the sea-area- 
scale drift-trajectory prediction models and the drift prediction method. 
Section 4 introduces the modeling of the SAR environment. Section 5 
introduces the SAR path planning algorithm combined with reinforce-
ment learning. Section 6 presents a drift experiment of actual PIWs as a 
case study to perform a comparative analysis of the experimental results. 
Finally, Section 7 presents conclusions and prospects. 

2. Maritime optimal search theory and maritime SARCPPF 

Maritime optimal search theory serves as the foundation for deter-
mining search areas, dispatching SAR units, and assigning search tasks. 
Soza Company Ltd. (1996) and Frost (1997, 2001) distilled this theory 
into three critical components, that is, probability of containment 

(POC), probability of detection (POD), and probability of successful 
search (POS). 

Maritime SAR aims to develop search plans and improve POS within 
the shortest possible time with limited search resources. POS relies 
mainly on POC and POD (Xiong et al., 2020): 

POS=POC × POD (1) 

Therefore, maritime SAR aided decision-making involves two key 
issues: (1) optimal maritime SAR area determination, namely, full 
consideration and quantification of all influencing factors, such as 
distress waters, distress targets, and marine environmental conditions, 
in the drift process to predict the target trajectories and their final 
location probability distribution, and to determine the optimal search 
and rescue region, and (2) optimal planning of the maritime SAR, that is, 
based on SAR area determination, an optimal allocation scheme of SAR 
resources in time and space should be sought to improve the POS. The 
concept of maritime SAR for PIWs is illustrated in Fig. 1. 

2.1. POC 

Referring to the likelihood of an object being present within a search 
area, POC is a critical factor in search planning. Search planners need to 
allocate resources effectively to maximize their discovery potential. POC 
is expressed as a percentage and increases with larger search areas. 
When all particles can be contained within the region, POC reaches 
100%. In actual maritime SAR missions, SAR units are often restricted in 
number, which requires SAR units to prioritize areas with high POC. 
Therefore, the search area is often subdivided into equally sized A × B 
square grids, with the size of the grid cells depending on the capability of 
the SAR detection equipment. The possibility of a SAR target being 
present in each subgrid was quantified by calculating the POC of each 
grid cell. 

The specific equation for the calculation can be described as follows: 

POC=mi/M (2)  

where mi is the number of particles falling in cell i, and M is the number 
of particles contained in the overall distribution area. 

2.2. POD 

POD represents the probability of detection, indicating the likelihood 
that a search unit can detect a SAR target, and it is a crucial metric for 

Fig. 1. Maritime SAR concept for PIWs.  
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evaluating the effectiveness of an SAR detector in the search area 
(Abi-Zeid and Frost, 2005). Calculating the POD involves two important 
concepts, that is, sweep width and coverage rate. Sweep width refers to 
the effective distance within which the detector can locate the search 
object in a given search area. In this study, it serves as an indicator of the 
vessel’s search capability. 

Accurately determining the sweep width of the equipment requires 
statistical analysis of extensive experimental and practical samples, 
because different SAR targets in various search environments exhibit 
distinct horizontal range curves for each piece of equipment. Typically, a 
lateral curve can be plotted by analyzing large amounts of experimental 
data to assess the performance of a given device (Ai et al., 2019; 
Washburn and Kress, 2009; Wu and Zhou, 2015). Given that the actual 
sweep width can be affected by the performance of the SAR equipment, 
such as sensor performance, the characteristics of the search target, that 
is, physical characteristics such as size and color, and the maritime 
environment, such as wind, sea conditions, visibility, and sunlight 
reflection, it needs to be adjusted according to the actual situation. 

IAMSAR (2016) provides the sweep width of the universal SAR 
equipment for generic search targets and the correction coefficient 
under different environmental conditions (Table 1). The sweep widths of 
the vessels are listed in Table 2. This table was compiled in the 1980s by 
the United States Coast Guard, which has conducted a large number of 
maritime SAR experiments according to the actual SAR environment. 
They measured the sweep widths of different search facilities under 
various conditions for different search targets (Anderson et al., 2006; 
Engel and Weisinger, 1988). 

Coverage (C) is a measure of the degree to which a SAR unit’s search 
area is covered during an operation (Burciu, 2010; Frost, 1997). This can 

be expressed as the effective coverage divided by the total search area. It 
is generally assumed that a vessel chooses to search using the 
parallel-line method, which requires fewer turns and is applicable to 
complex search scenarios (Fig. 2). The equation is as follows: 

C =
W × S

A
=

W
R

(3)  

where W is the sweep width, S is the effective path length, A is the size of 
the search area, and R is the route spacing. 

There is a close functional relationship between POD and coverage. 
Three models have been identified to describe this relationship, that is, 
fixed distance detection, inverse cube, and the random detection model 
(Abi-Zeid et al., 2011). Among them, the random detection model has 
been used to estimate the POD in a complex maritime SAR environment. 
Therefore, we used a random detection model in our study as follows: 

POD= 1− e− C (4)  

2.3. Maritime SARCPPF 

This paper presents a coverage path planning algorithm for search 
and rescue (SAR) vessels in maritime drowning accidents based on 
optimal SAR theory. The proposed SARCPPF consists of three modules, 
that is, drift trajectory prediction, SAR environment modeling, and 
coverage search. To predict the drift trajectories of PIWs with different 
postures in different sea areas, sea-area-scale drift trajectory prediction 
models (Wu et al., 2023) were used along with a random particle 
simulation method. All the predicted positions of the PIWs were then 
fused to generate a new prediction area. The search path planning region 
was determined based on the minimum bounding rectangle, and a hi-
erarchical probability environment map was established to realize the 
SAR of multiple SAR units. A covering path planning algorithm 
combining deep reinforcement learning was proposed to enable rescue 

Table 1 
Weather correction coefficients for generic search targets.   

Objects 

Winds (km/h) or currents 
(m) 

PIW, life raft, or ship <10 m (33 ft) Other 
objects 

0–28 km/h or 0–1 m 1.0 1.0 
28–46 km/h or 1–1.5 m 0.5 0.9 
>46 km/h or > 1.5 m 0.25 0.9  

Table 2 
Sweep width tables of vessels.   

Meteorological visibility (km) 

Objects 6 9 19 28 37 
PIW 0.7 0.9 1.1 1.3 1.3  

Fig. 2. Parallel line search for maritime search and rescue.  

Fig. 3. Framework for drift prediction.  
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units to achieve fast arrival and high cumulative POS coverage, thereby 
increasing the SAR success rate in a limited time. 

3. Predicting maritime drift trajectories 

Drift theory investigates the impact of meteorological and oceano-
graphic factors on object motion in marine environments and forms the 
basis for the mathematical methods used to determine search areas and 
routes in maritime SAR (Frost and Stone, 2001). In this study, 
sea-area-scale drift prediction models (Wu et al., 2023) were used to 
predict the trajectories of individuals with different postures in the 
Chinese sea areas, as illustrated in Fig. 3. 

3.1. Drift prediction models for persons in the water 

The Leeway model (Allen and Plourde, 1999; Allen, 2005; Allen 
et al., 2010; Breivik and Allen, 2008) was developed to analyze the 
impact of sea wind at a reference height of 10 m on the drift of various 
unpowered floating objects using Lagrangian particle simulation and 
probabilistic statistical analysis. Leeway is defined as “the motion of an 
object caused by wind and waves relative to currents (from depths 
ranging from 0.3 m to 1.0 m)” (Allen and Plourde, 1999; Breivik et al., 
2013). 

Marine environmental data can be used to compute the drift velocity 
vector of particles in water as follows: 

dx
dt

= v(x, t) (5)  

where dx is the change in the horizontal position of the floating object 
over time and v(x, t) is the two-dimensional horizontal velocity. 

v(x, t)=VF− current(x, t) + Vleeway(x, t) + VF− wave(x, t) (6) 

Among them, VF− curren(x, t) represents the velocity caused by the 
current, that is, the sea surface velocity. Vleeway(x, t) represents the wind- 
induced drift velocity. VF− wave(x, t) is the wave-induced drift speed. 
Generally, the effect of wave forces is believed to be negligible for most 
targets in distress at less than 30 m in length (Breivik et al., 2011). 
Therefore, wave-induced drift velocity was excluded from this study. 

The wind-induced drift speed can be decomposed into two compo-
nents, that is, downwind speed (DWL) and crosswind speed (CWL), 
which are linearly correlated with wind speeds 10 m above sea level 

(Fig. 4), as demonstrated by Formula (7) in Allen (2005). The proba-
bility of +CWL and -CWL can be obtained from experimental statistics, 
where the CWL speed is deemed positive if it is to the right of the DWL. 
The direction of the crosswind speed changes from +CWL to -CWL or 
from -CWL to + CWL when the wind velocity falls within a specified 
range, which is referred to as jibing frequency (Allen and Plourde, 
1999). 

Lw = cwVwind + bw + εw

L1
w+

= c1
w+

Vwind + b1
w+

+ ε1
w+

L1
w−

= c1
w−

Vwind + b1
w−

+ ε1
w−

(7) 

Among them, Lw、 L1
w+

、 L1
w−

represent the leeway components, cw、 
c1

w+
、 c1

w−
are the linear regression slopes, bw、 b1

w+
、 b1

w−
are intercepts, 

εw、 ε1
w+

、 ε1
w−

are the error terms. This equation is an unconstrained 
model, whereas the constrained method generates a linear fit with zero 
offset, as follows: 

Lw = cwVwind + bw

L1
w+

= c1
w+

Vwind + b1
w+

L1
w−

= c1
w−

Vwind + b1
w−

(8) 

The leeway rate of each object at sea is highly specific and contingent 
on its exposure to wind, mass, and structures above and below the 
waterline. Simulating a person’s drift is an intricate process owing to the 
numerous uncertainties involved. Maritime meteorological conditions 
are often complex and are characterized by small-scale turbulence, 
vortices, stratification, and shear in near-surface currents. These issues 
are intricate, not easily discernible, and frequently pose challenges for 
resolution. 

Therefore, in this study, we used the sea-area scale prediction models 
developed by Wu et al. (2023), which divided the Chinese coastline into 
distinct regions. We conducted drift tests that involved releasing mani-
kins integrated with GPS devices and ship tracking to observe maritime 
environmental elements. Based on field experiment data, they modeled 
the drift trajectory at the sea area scale and generated predictive models 
for PIWs exhibiting different postures. 

3.2. Drift trajectory prediction 

In areas with complex marine environments, the accuracy of the 
Last-Known-Position (LKP) can be compromised, leading to significant 
deviations in the drift trajectory prediction. Therefore, alternative 
methods should be explored to improve the reliability of location in-
formation used as a starting point. To address this issue, we used the 
Monte Carlo simulation method to simulate the LKP error (Shchekinova 
and Kumkar, 2015). According to Breivik and Allen (2008), uncertainty 
modeling of the leeway parameters was performed. In the case of DWL: 

Lw =(cw + εw/20)×Vwind +
(

bw +
εw

2

)
(9)  

where, εw = Syx × Z; Syx is the standard deviation; Z is a random number 
which is normally distributed N (0, 1). 

The maritime environmental data obtained may not accurately 
reflect real marine conditions owing to inherent limitations in mea-
surement errors and other contributing factors. Therefore, a random 
walk model was used to effectively capture the uncertainty in marine 
environment data during the drift trajectory prediction process. 
Considering DWL as an example, the equation can be expressed as fol-
lows: 

u′
m = (K)

1/2dw(t)
K = σ2

wT
u′

m ≡
(
u′

m, v′
m

)
(10)  

Fig. 4. Relationships between the leeway, leeway angle, and the DWL and CWL 
components of the leeway (Breivik and Allen, 2008). 
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Lw =(cw + εw/20)× (‖Vwind| + u′
m|)+

(
bw +

εw

2

)
(11)  

where K is the diffusion coefficient, dw(t) is a general random variable 
satisfying a normal distribution with mean 0 and a second moment of 
2dt, σ2

w is the variance of wind or current speed, and T is the integral time 
scale, usually T = dt/2. 

The drift speed of the PIWs at any given time can be calculated based 
on the wind and flow data using Eq. (6). The drift trajectory can be 
determined by integrating the drift speed as follows: 

loci(t) − loci(0)=
∫t

0

[
Vdrift(t′)dt′

]
=

∫t

0

[
VLeeway(t′)+VF− current(t′)

]
dt′ (12)  

where loci(t) is the location of the PIW at a given time t, loci(0) are LKPs. 
In this study, distress sea areas and different leeway coefficients of 

different search objects were introduced because drifting objects of 
different types and distress sea areas have different leeway coefficients. 
Search planners need to determine the types of distress targets when 
making search plans. However, in an actual operation, it is difficult to 
determine the type of distress object because the accident information 
obtained is not always sufficiently comprehensive. This requires the search 
planner to make strategic judgment based on existing accident informa-
tion. This study has introduced multi-object leeway coefficients for various 
possible distress objects to further plan the search prediction areas. 

The corresponding sea-scale drift trajectory prediction model was 
selected for the upright and facedown drowning personnel, and the drift 
trajectory prediction was performed accordingly. In maritime SAR, the 
target search range and the output probability distribution of the drift 
prediction model have proven to be of considerable importance in 
guiding search path planning. For each simulation, particle tracking was 
conducted using the Monte Carlo method to generate 1000 particles. 

4. Maritime SAR environment modeling 

The complexity and variability of the marine environment, coupled 
with the diverse postures of PIWs, have heightened the challenges in 
search-path planning. There is an urgent need for robust environmental 
modeling to facilitate future path planning based on the multi-posture 
PIW drift prediction results. Based on the simulation results, a new 
drift prediction area was generated by integrating all the PIW particles 
in different positions to simulate the drifting conditions of large-scale 
PIWs during maritime accidents. This area was then used to determine 
the search zone and generate a model for the maritime SAR environ-
ment. A path-planning algorithm was developed to enable searching 
among multiple vessels. The modeling process is illustrated in Fig. 5. 

4.1. Establishment of the minimum bounding rectangle (MBR) 

The Graham scanning algorithm (Graham, 1972; Kong et al., 1990) 
was used to generate the minimum convex hull. This algorithm consists 
of the following six steps.  

(1) Find the bottom-left point from the point set that must be on the 
convex hull.  

(2) Rank the remaining points according to the polar angle and 
compare the distance to the pole when the polar angles are the 
same, with the one closer to the pole taking precedence.  

(3) Stack S was used to store the points on the convex hull, and the 
two smallest points sorted by pole angle and pole were pushed 
into the stack.  

(4) Scan each point to check whether the line segment formed by the 
first two elements on the top of the stack and this point “turns” to 
the right (cross product ≤ 0). 

Fig. 5. Maritime search and rescue path planning environment modeling.  

Fig. 6. Hierarchical probability map modeling.  
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(5) If “yes,” pop up the top element of S and return to step (4) until 
“no,” then push this point onto S and proceed to step (5) for the 
other points.  

(6) Vertex sequence of the convex hull is an element of the final 
stack. 

The direct use of convex polygons as search areas is not conducive to 
search-path planning. Therefore, an MBR containing convex polygons 
should be generated to facilitate search-path planning (Cheng et al., 
2008; Xiong et al., 2021). The procedure was as follows:  

(1) Two points should be considered as the edge of the rectangle, 
using this edge as the base coordinate of the xy-axis.  

(2) All the points are rotated around this base coordinate to find the 
minimum and maximum x-coordinates and the maximum y-co-
ordinates of all points based on this edge; then, the area value of 
the range and the boundary data are obtained.  

(3) Process (2) was repeated for each edge, and the MBR parameters 
with the minimum area were the output. 

4.2. Hierarchical probability map modeling 

In a scenario where multiple people fall into the water, the final 
search area may be relatively large, and multiple search and rescue 
forces are required to search simultaneously. Therefore, it is necessary to 
divide the search and rescue areas and conduct search and rescue path 
planning for each sub-area. In previous studies, the search area was 
primarily divided through a continuous expansion centered on the grid 
cell with the highest POC, potentially leading to locally optimal solu-
tions. To address this issue, this study has proposed a new MBR and 
hierarchical path-planning algorithm based on the assumption of suffi-
cient SAR units. The search area was determined based on the minimum 
bounding rectangle (MBR) by considering the integrated position dis-
tribution of the simulated particles at different PIW times. A hierarchical 
probability map was established, and each search and rescue unit pro-
ceeded directly to the highest probability area within its corresponding 
block for simultaneous search and rescue operations. 

As shown in Fig. 6, the overall area was initially divided into large 
blocks of equal size, and the probability distribution of the particles in 
each block was calculated. A SAR unit was deployed for each block 
simultaneously. Subsequently, each block was divided into equal-sized 
A × B regular grids (Agbissoh Otote et al., 2019), with the grid cell 
size dependent on the sweeping width of the search ships (Galceran and 
Carreras, 2013). The POC was then calculated and colors were assigned 
to different grid cells according to their respective POC values, thereby 
generating a probability distribution map (Agbissoh Otote et al., 2019; 
Ai et al., 2019; Lee and Morrison, 2015; Xiong et al., 2020). In this study, 
we assumed that the environmental state was stable at a given time. 
Once the search area was defined, it remained unchanged with the 
development of the SAR process. 

5. Maritime SAR coverage path planning based on deep 
reinforcement learning 

In this study, we have proposed an autonomous coverage path- 
planning algorithm for multiship search and rescue (SAR) units based 
on deep reinforcement learning. Prior research (Wu et al., 2023) 
demonstrated the superior trajectory prediction accuracy and search 
area of the sea-area-scale drift trajectory prediction model. Therefore, in 
our study, each SAR unit navigates directly to the highest probability 
grid of its corresponding block using an environmental map established 
from the drift simulation results at a given time. Search path planning is 
the process of selecting navigation actions according to the current SAR 
environment information. 

5.1. Overall maritime SAR path planning process 

When planning maritime SAR routes, the next stage of the SAR unit 
depends only on the previous state and action, which can be expressed as 
a Markov Decision Process (MDP) (Sutton and Barto, 1998; Mnih et al., 
2013). An MDP process is an interaction process between the environ-
ment and the agent, which includes three signals, namely, state (S), 
action (A), and reward (R). It provides direct feedback on the results 
generated by interactions with the environment (E). The agent receives 
the states at each discrete time step and selects the corresponding ac-
tions to transform them into new states. This transformation process 
then generates an evaluation value reward. The new state is acquired by 
the agent, and the cycle is repeated, as shown in Fig. 7. 

5.2. Algorithm structure 

5.2.1. The Markov decision process of maritime SAR path planning 
The expression for maritime SAR path planning includes a vessel 

agent and two sets (state set S and action set A). By selecting and 
executing an action from the action set A, the agent completes a state 
transition. During reinforcement learning (RL), the vessel’s goal is to 
maximize the cumulative reward. This process mainly contains quintu-
ples (s、a、p、r、γ). The symbols and their corresponding explanations 
are listed in Table 3. 

Fig. 7. Markov decision process diagram.  

Table 3 
The symbols and the corresponding explanations of the maritime SAR path 
planning model.  

List of symbols Explanations 

S The state space of the environment. 
A The action space of the SAR unit. 
P The state transition model. 
R The reward value function. 
γ The discount factor. 
st The state at time t. 
Sdone The state when the agent passes the whole area. 
at The action taken at time t. 
rt The reward value at time t. 
Rt The cumulative reward value. 
RPOC The reward value of POC. 
Rsearch The reward value if the next state St+1∕∈ H. 
Rdone The reward value that the agent passes the whole area. 
POCi The POC value at step i. 
stepi The number of steps experienced at step i. 
T The maximum number of steps that the agent can take. 
Π The strategy of the agent. 
Π(a|s) The action selection strategy. 
H The set of grid units searched by the agents. 
U The set of grid units has not been searched by the agents. 
F The set of grid units whose POC value is 0. 
ε The probability that a random action selection is conducted. 
A∗ The action with the highest Q value at the current state. 
Achoose The set of available actions under the current state. 
VΠ(s) The state value function. 
QΠ(s,a) The action value function.  
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S is the state space of the environment, that is, the limited state that 
the SAR unit can achieve (Minsky, 1967). A is the action space of the 
SAR unit, which consists of all possible actions that the vessel agent can 
choose through strategy selection in each environmental state. In this 
study, the action space of the vessel agent is discretized, meaning that, 
from one grid to another, there are only four actions to reduce the 
negative impact of irregular searches on the security of searches (IAM-
SAR, 2016). P is the state transition model; that is, the probability that in 
the current state s of the environment, where an agent causes this s to 
transfer to another state s′. R is the reward value function fed back to the 
agent by the environment in the form of encouragement or punishment. 
The strategy of agent Π is to map S to A. If state st ∈ S, the agent takes 
action at ∈ A, and moves to the next state st+1 according to P, meanwhile 
receives a reward value rt ∈ R. The discount factor γ is used to calculate 
the cumulative value of returns over time. We have provided a detailed 
description of reward and action selection policies.  

• Reward function 

A suitable reward function is required to specify the training objec-
tive. The advantages and disadvantages of a vessel agent in the learning 
process can be determined using the reward function. This enables it to 
achieve its goal in the shortest time. In maritime SAR coverage path 
planning, a ship agent is required to search the overall SAR area under 
the conditions of prioritizing search areas with high probability and 
ensuring that no duplicate paths are taken. 

Sets H and U are introduced to mark the position information of the 
grid units that the agent has searched for and has not searched for. At 
model initialization, set H = {s0} and U = {s1,s2,s3,⋯,sn}. Grid units in 
the hierarchical environment map with a POC value of 0 were not 
searched and were denoted as set F to reduce the search time. Set F is 
then added to set H and it is removed simultaneously from set U. 

After the ship’s agent selects an action according to the action se-
lection strategy, it arrives at state st+1 and determines whether st+1 is 
already in set H. If st+1∕∈ H, positive rewards Rsearch is feedback, and the 
state st+1 is then added to set H while being removed from set U. This can 
guide the agents to cover all the SAR areas. The reward function design 
should consider the priority search of high-probability grids, namely, 
the POC reward, which is calculated using the following equation: 

RPOC =
1

stepi
POCi×1000i∈ (0, T) (13)  

where T is the maximum number of steps that the vessel agent can take 
in each iteration; POCi is the POC value of the SAR grid in the next state 
that the agent reaches; and stepi is the number of steps experienced by 
the ship agent in the current state. As the number of steps increases, RPOC 
decreases, thereby guiding the ship agent to search the high-probability 
region first. 

Rdone is given once the ship agent passes through the entire search 
area, and they enter the termination state Sdone. The reward function was 
set as follows: 

R =

⎧
⎨

⎩

Rsearch + RPOC st+1! = Sdone&&st+1∕∈ H
Rdone st+1 = Sdone

0 else
(14)    

• Action selection policy 

In reinforcement learning, the two crucial concepts of exploitation 
and exploration need to be balanced. Exploitation involves selecting the 
optimal action for the vessel agent by maximizing the value of all known 
state-action pairs. However, if the vessel agent chooses randomly from 
its set of actions, it is referred to as exploration. While exploitation helps 
maximize the expected rewards in real time, it may lead to local optima. 
By contrast, exploration helps maximize total returns in the long run. 

In this study, we have proposed an action selection strategy that 
balances exploitation and exploration to achieve a global optimal solu-
tion. In the early stages of reinforcement learning, the vessel agent 
prioritizes exploration with a high probability. As the number of 
learning episodes increases, the probability of exploration gradually 
decreases, whereas the probability of exploitation increases. In this 
study, a ε-greedy strategy was used (Tokic, 2010). A random action 
selection is conducted with the probability of ε to explore the new 
environment. Meanwhile, action a with the highest Q value is selected 
with the probability of 1 − ε. The equation used is as follows: 

A∗⟵arg maxaQ(s, a) (15)  

Π(a|s)⟵

⎧
⎪⎨

⎪⎩

1 − ε + ε
|A(s)|

if a = A∗

ε
|A(s)|

ifa ∕=A∗

(16)  

where |A(s)| denotes the number of actions performed in the current 
state. 

During learning, a random number rand, rand ∈ (0, 1) is generated. If 
rand < ε, the action is selected at random, and if rand > ε, the action 
with the highest Q value in the current state is selected. To ensure model 
stability and obtain the global optimal solution, the value of ε is 
dynamically adjusted in the iterative calculation as follows: 

ε = 1 − episode / L (17)  

where episode is the current episode number and L is the maximum 
learning episode. 

Boundary assessment, repeated search assessment, and termination 
conditions were added to the action selection process to prevent the 
model from looping endlessly. Each time a new state st is reached, the set 
of available actions Achoose under the current state is initialized as [True,
True,True,True], and the action at is selected using an ε-greedy approach. 
Upon reaching the next state st+1, if the current state st is located at the 
boundary of the search area and the state st+1 is beyond the SAR area, or 
if st+1∈ H, the action is reselected and the corresponding action in Achoose 
is marked as False. If Achoose = [False,False,False,False], the termination 
condition is reached and the current episode ends. 

The objective of reinforcement learning is to optimize the long-term 
cumulative reward for vessel navigation, rather than focusing on short- 
term rewards. With the introduction of γ∈ [0, 1), the feedback value can 
be described as follows: 

Rt = rt+1 + γrt+2 + γ2rt+3 + … =
∑∞

k=0
γkrt+k+1 (18) 

The state value function VΠ(s) is the evaluation of the quality of the 
current state. Each state’s value depends not only on its current state, 
but also on its subsequent states. The value of the VΠ(s) of the current s is 
obtained by calculating the expectation of the accumulated reward Rt of 
the state: 

VΠ(s)=EΠ[Rt|st = s] (19) 

The action value function of the state-action couple (s,a), denoted as 
QΠ(s,a), evaluates the long-term payoff to the agent through the use of 
strategy Π: 

QΠ(s, a)=EΠ[Rt|st = s, at = a] (20) 

The optimal decision sequence of the MDP is solved using the 
Bellman equation, which is the transformation relation of the value 
function: 

VΠ(s)=
∑

a
Π(s, a)

∑

s′
Pa

ss′
[
Ra

ss′ + γVΠ(s′)
]

(21)  
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QΠ(s, a)=
∑

s′
Pa

ss′

[

Ra
ss′ + γ

∑

a′

QΠ(s′, a′)

]

(22)  

where, Pa
ss′ = P(st+1 = s′|st = s, at = a), Ra

ss′ = E[rt+1|st = s,at = a, st+1 =

s′]. 
Monte Carlo learning and time difference learning (TD) are used to 

approximate the solution of the Bellman equation, while continuously 
optimizing of the value function to improve Π. Watkins first proposed 
the Q-learning algorithm (Watkins, 1989; Watkins and Dayan, 1992), 
combining the Bellman equation, MDP, and other theories with TD 
learning. TD Learning combines a Monte Carlo sampling method with a 
dynamic programming method, estimating the current value function 
from the value function of the subsequent state. The value function was 
computed as follows: 

VΠ(s)← VΠ(s) + ∂(Rt+1 + γVΠ(s′) − VΠ(s)) (23)  

where Rt+1 + γVΠ(s′) is the TD target, δt = Rt+1 + γVΠ(s′) − VΠ(s) is the 
TD bias, ∂ is the learning rate. 

5.2.2. Maritime coverage path planning model based on deep reinforcement 
learning 

RL has an edge in decision-making, and the deep learning approach 
combines low-level features to form more abstract high-level features or 
categories, approximating a nonlinear function, and excels in perception 
(Hinton et al., 2006). Combined with the characteristics of deep 
learning, the use of deep neural networks as function approximators can 
substantially improve RL performance of reinforcement learning. DRL 
integrates RL and deep learning to complement each other and provides 
a more effective solution to the perception and decision problems of the 
system. The Q-learning algorithm builds a Q-table to iterate over the 
values of all existing state-action pairs in the storage environment and 
then reads these values through queries. DQN uses a general function 

approximator (artificial neural network) to replace the stored Q value. 
The main idea is to replace the traditional Q table with a deep neural 
network trained from stored experience samples, build a “memory” of 
selected experiences, and train the Q network on a subset of states rather 
than on all states that the agent sees. Given that there is no network, 
Q-learning is too dependent on the state and may lead to insufficient 
learning (Cao et al., 2019; Fang et al., 2021; Zhu and Zhang, 2021; Meng 
et al., 2021). 

Most current studies consider a single person falling into water as an 
example to determine the search area and plan the search path. This 
study has considered the integrated search and rescue area of people 
falling into water using different gestures. In this context, the state space 
is two-dimensional and the action space is discrete. In future studies, 
large-scale drowning accidents caused by ship collisions, as well as the 
collaborative search and rescue of drones and ships involving a three- 
dimensional state space and continuous action space, will be further 
considered. In the study of high-dimensional problems, the amount of 
computation required for the traditional RL algorithm increases sharply 
with an increase in the number of inputs, and it is difficult to determine 
an effective strategy. When the environment expands, it may cause a 
memory burden and lead to a failure in obtaining the optimal solution. A 
DQN uses neural networks to estimate values and overcomes the 
shortcomings of Q learning. 

Mnih et al. (2015) published their work on DQN in Nature using a 
convolutional neural network (Lecun et al., 1998) to express the action 
value function and train it based on rewards. The Q-network approxi-
mation of the Q-value calculation is expressed as 

Q(s, a; θ) ≈ QΠ(s, a) (24) 

The DQN used in this study consists of two fully connected layers. 
Feature extraction and nonlinear combinations are performed to obtain 
the Q-value evaluated by the network for each action. The main char-
acteristics of a DQN are as follows (Zhu and Zhang, 2021): 

Fig. 8. The path planning model based on DQN.  
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Table 4 
Pseudo-code of the DQN training. 
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(1) Target network 

To mitigate the instability that arises during Q-function updates, a 
target network is introduced to obtain the Q value before updating the Q 
function. The new Q function is then used to update the target network; 
that is, every n steps, the parameter θi of the current Q network will be 
copied to the target Q network Q(s′,a′; θ−i ).  

(2) Experience pool U (D) 

The experience pool constructs a replay buffer, also known as a 
replay memory, to store and manage samples (st , at , rt , st+1). The expe-
rience replay mechanism was used, and minibatch (B) samples were 
randomly selected for training the Q-network. 

The current Q-network parameters are updated using the gradient 
descent method, and their loss function is expressed as: 

L(θi)=
1
2

(

r + γmax
a′

Q
(
s′, a′; θ−

i

)
− Q(s, a; θi)

)2

(25) 

The derivative ∇θL of the parameter θ in the loss function is calcu-
lated as follows: 

∇θL=

[

r+ γmax
a′

Q
(
s′, a′; θ−

i

)
− Q(s, a; θi)

]

∇θQ(s, a; θi) (26) 

The proposed DQN-based search path planning model obtains the 
optimal search path through interactive learning between agents and a 
maritime SAR environment model. The vessel agent arrives at the 
highest POC grid unit of each block and begins searching. The path 
planning model is illustrated in Fig. 8. Table 4 lists these algorithms. 

Maritime SAR coverage path planning based on deep RL algorithms 
is divided into two phases, that is, training and testing. In the training 
phase, the time complexity of the DQN is O(ns ∗ nd) when forward 
propagation is performed. Here, ns is the number of states and nd denotes 
the state feature dimension. When backward propagation is performed, 
the time complexity of the DQN is also O(ns ∗ nd). Therefore, the time 
complexity is O(ns ∗ nd). When training epoch rounds, the forward 
propagation time complexity is O(epoch ∗ ns ∗ nd). In the testing phase, 
the time complexity of DQN is also O(ns ∗ nd). 

6. Results and discussion 

6.1. Maritime SAR experimental settings 

To verify the validity of the proposed SARCPPF, a real offshore 
drift experiment was used as a case study for the calculations and 
analysis. On April 16–17, 2021, sea-drift experiments with manikins 
in different postures (upright and facedown) were conducted in the 
Pingtan waters of the Taiwan Strait. The experimental overview is 
presented in Table 5. 

Fig. 9. Drift trajectory prediction results.  

Table 5 
The experimental overview of maritime SAR simulation.  

No. Posture Start 
position 

Start 
time 
(UTC+8) 

End time 
(UTC+8) 

Wind 
speed 
(m/s) 

Current 
speed (m/ 
s) 

1 upright 119.885◦E 2021/ 
04/17 

2021/ 
04/17 

2.7–7.1 0.17–0.63 

25.455◦N 09:45 16:00 
2 facedown 119.885◦E 2021/ 

04/17 
2021/ 
04/17 

2.7–7.1 0.17–0.63 

25.455◦N 09:45 16:00 

We used Taiwan Strait drift prediction models for PIW with upright and face- 
down postures, namely TS_ I and TS_ II. In this section, unconstrained models 
are used to predict drift trajectories. 
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6.2. Results of drift trajectory prediction 

We took the release point of the manikins as the initial point and used 
the hydrometeorological data measured on April 17, 2021, the possible 
6 h drift trajectories of PIWs in vertical and facedown postures were 

calculated, as shown in Fig. 9. A 6 h drift trajectory and particle distri-
bution map of PIWs was generated with the fusion of multiple postures. 
This was used to simulate the possible position distribution of survivors 
when SAR vessels arrive at the scene of multiple drownings in a mari-
time accident. In this study, it was assumed that the data of the possible 
position distribution were constant at the 6 h drift time. 

The ranges of the wind and flow velocities measured (10 min 
average) during the experiment were counted, and a detailed statistical 

Fig. 11. The marine environment data and their changes with time used in the modeling process ((a) velocity changes, (b) direction changes).  

Fig. 12. The MBR of the area for SAR path planning.  Fig. 13. The initial block division results.  

Fig. 10. The marine environment data used in the modeling process ((a) downwind speed and direction, (b) current speed and direction).  
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analysis of the sea state was conducted. The wind speed range was 
2.7–7.1 m/s, and the downwind direction varied in the southwest di-
rection, and the variation range was less than 90◦ with relatively little 
fluctuation. The wind speed was divided according to wind conditions, 
and a rose diagram of the wind direction was drawn. The flow speed 
range was 0.17–0.63 m/s, and the flow direction varied from southwest 
to northeast with counterclockwise deflection over time. Based on the 
flow conditions, the flow speeds were divided, and a flow rose diagram 
was drawn. As shown in Figs. 10 and 11, the marine environment data 
and changes used in the modeling process are depicted. 

6.3. Results of maritime SAR environment modeling 

6.3.1. Results of the establishment of MBR 
The MBR of the area for SAR path planning according to the final 

particle distribution of the multi-posture PIWs is shown in Fig. 12. 
Assuming that four nearby vessels can be engaged in simultaneous 
search and rescue after rotation, the initial block-division results are as 
shown in Fig. 13. 

6.3.2. Results of the hierarchical probability map 
A one-level hierarchical environment map was generated. According 

to visibility reanalysis data from the European Center for Medium-Range 
Weather Forecasts (ECMWF), visibility in Pingtan was 18.5 km on April 
17, 2021. Based on the sweep width table (Table 2), the sweeping width 
of the vessel agent was set to 1 km. From the measured marine envi-
ronment data (Table 5 and Fig. 10), the value of the weather correction 
coefficient was 1. Therefore, the corrected sweep width of the vessel is 
the same as the unadjusted sweep width. 

Fig. 15. The sub-grid hierarchical environment map.  

Fig. 14. The one-level hierarchical environment map.  

Table 6 
The parameters of the algorithm proposed in this study.  

Parameter Value Description 

L 5000 maximum learning episode 
T 200 maximum step size 
γ 0.5 discount factor 
LR 0.1 learning rate 
n 50 target network update frequency 
ε 0.9 initial action selection strategy 
B 32 batch size 
M 1000 memory length 
Layers 10 the number of neurons in each hidden layer 
N_STATES 2 the input neurons 
N_ACTIONS 4 the output neurons 
Optimizer Adam optimizer  
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Based on the corrected sweep width, each initial block was parti-
tioned into grid units to generate a hierarchical environmental map. The 
grid cell size and track spacing were determined using the corrected 
sweep-width. The simulated scene was situated in an open sea without 
natural or artificial obstacles. The hierarchical probability environment 
map and the initial position of the SAR vessels are shown in Figs. 14 and 
15. 

6.4. SAR coverage path planning results  

• Experimental settings 

Simulation Environment: All the simulation experiments in our study 
were conducted on a desktop computer with an Intel (R) Core (TM) i7- 
1260P 2.10 GHz CPU, 16 GB of RAM, and Windows 11 operating system, 
using the Python programming language. 

Fig. 16. The average results of our object for different parameter settings.  

Fig. 17. The path planning results obtained by the model proposed in this study.  
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Fig. 18. Search starting points and routes of the traditional parallel line scanning algorithm (PA).  

Fig. 19. Search starting points and routes of the traditional parallel line scanning algorithm starting from the highest heat grid (SPA) (the red line represents the 
overlapping path). 
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Fig. 20. Search starting points and routes of the BA* algorithm (the red line represents the overlapping path).  

Fig. 21. Search start points and routes of the Q-learning algorithm.  

J. Wu et al.                                                                                                                                                                                                                                      



Ocean Engineering 291 (2024) 116403

17

Algorithm Comparison: The proposed algorithm was compared with 
a search method commonly used in maritime SAR and a more advanced 
path-planning algorithm. Including the traditional parallel line scanning 
algorithm (PA) (IAMSAR, 2016), the parallel line scanning algorithm 

starts from the highest heat grid (SPA), the BA* algorithm (Viet et al., 
2013), and the Q-learning method (Ai et al., 2021). The BA* algorithm 
was used to solve an online complete coverage task for an autonomous 
cleaning robot in an unknown workspace based on boustrophedon 
motion and an A* search algorithm. The robot performed a boustro-
phedon motion to cover the unvisited area until it reached the critical 
point. The robot then detected the backtracking point based on its 
accumulated knowledge, determined the best backtracking point as the 
starting point for the next boustrophedon motion, and continued to 
cover the next unvisited region, thereby achieving complete coverage. 
We added a search strategy for prioritizing high-probability areas to the 
BA* algorithm and Q-learning method to ensure fairness. 

Algorithm parameter settings: The parameters of the proposed al-
gorithm are listed in Table 6. Among them, the Taguchi experimental 
design methodology was used to determine the four control parameters, 
that is, learning rate LR, discount factor γ, target network update fre-
quency n, and the initial action selection strategy ε, in our maritime 
coverage path planning model. The levels of the four parameters are as 
follows: 

LR={0.005, 0.001, 0.1, 0.15}

γ ={0.45, 0.5, 0.6, 0.8}

n={20, 50, 80, 100}

ε={0.8, 0.85, 0.9, 0.95}

At these parameter levels, orthogonal matrix L16(44) was used for the 

Table 7 
The repetition rate, coverage ratio, and the number of steps of SAR planning 
results.  

Block Algorithms Repeated coverage (%) Coverage (%) Step 

Block 1 Ours 0 100 18 
Q-learning 0 100 18 
PA 0 100 18 
SPA 0 100 23 
BA* 13.6 100 22 

Block 2 Ours 0 100 18 
Q-learning 0 100 20 
PA 0 100 23 
SPA 8 100 25 
BA* 0 100 20 

Block 3 Ours 0 100 23 
Q-learning 0 100 23 
PA 0 100 23 
SPA 8 100 25 
BA* 14.8 100 27 

Block 4 Ours 0 100 20 
Q-learning 0 100 20 
PA 0 100 23 
SPA 8 100 25 
BA* 4 100 25  

Fig. 22. Comparison of the cumulative changes in the POS between different methods for four hierarchical probability environments.  
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calibration experiment. To ensure equity, the algorithm was run 20 
times independently for each parameter setting. The average results for 
our object for different parameter settings are shown in Fig. 16. The 
optimal control parameter settings were determined to be: LR= 0.1, γ =
0.5, n= 50, ε= 0.9. 

Therefore, the control parameters used in this study were set as 
follows. The learning rate is 0.1, the γ coefficient is 0.5, the target 
network update frequency is 50 steps, the initial action selection strat-
egy is 0.9, and the maximum learning episode is 5000.  

• Results and analysis 

The proposed method was tested in four hierarchical environments 
(Fig. 15), and the path-planning results are shown in Figs. 17–21. These 
algorithms can achieve full coverage of the search and rescue areas by 
setting search rules. However, the search path planning results of the 
SPA and BA* algorithms contained overlapping paths, whereas both the 
Q-learning algorithm and our model have the ability to achieve no 
duplicate path coverage. However, in some environments (grey grids in 
Fig. 21d), the Q-learning algorithm passes through the region where the 
grid unit POC value is zero in the hierarchical probabilistic environment 
map, which may lead to an increase in search time. 

To quantitatively assess the above methods, the repetition rate, 
coverage ratio, and number of path planning steps were computed, as 
shown in Table 7. The results have shown that the navigation route 
generated by our model performs more effectively than the other algo-
rithms in terms of repetition and the number of steps. According to the 
calculation methods of POC and POD described in Section 2, they were 
evaluated from the perspective of the cumulative POS. As shown in 
Fig. 22, in the four sub environments, our model reached the maximum 
cumulative POS with the fewest steps, and the cumulative POS growth 
rate of our model was faster, indicating that the vessel agent in our 
model can prioritize covering high-probability regions. 

The cumulative POS of the parallel line scanning algorithm and BA* 
algorithm increased rapidly at some point. However, the proposed al-
gorithm still achieved the maximum cumulative POS with a relatively 
small number of steps, indicating that the proposed algorithm can still 
find higher-quality solutions after reaching a certain degree of search, 
demonstrating its superior exploitation ability. Although the BA* algo-
rithm can achieve full coverage and rapid growth of cumulative POS in 
the short term, it performed poorly in balancing the two goals of non- 
duplicate paths and prioritizing the search for high probability zones. 
In some cases, it produced more duplicated searches in pursuit of high 
probability zone coverage (block 3), making it difficult to meet SAR 

requirements in complex scenarios with large search areas. Although the 
Q-learning algorithm also showed strong performance in reaching the 
maximum cumulative POS with fewer steps, in some environments the 
cumulative POS growth rate was slower than that of our algorithm, and 
our algorithm showed better performance in preferentially covering 
high-probability regions. 

Based on the hierarchical probability environment map, the cumu-
lative POS for the overall SAR area (POSC) of each path-planning 
method was calculated based on the assumption that ships in the four 
subgrid hierarchical environments perform simultaneous searches at the 
same time and search speed. POSC can be calculated as follows: 

POCmn =POCTmn ∗ POCm (27)  

POSC =
∑N

k=0
POSk (28)  

POSk =
∑M

m=1
POSTm (29)  

where POCmn is the POC of each grid cell in the overall environment 
map, m is the block number, n is the grid cell number, POCTmn is the POC 
of grid cell n in the subgrid hierarchical environment, POCm is the POC 
of block m in the one-level hierarchical environment map, k is the 
number of search steps of the current ship, N is the maximum number of 
search steps of each subgrid hierarchical environment map, POSk is the 
POS of the entire SAR region in the current step, POSTm is the POS of 
each subgrid hierarchical environment in the current step. 

The POSC of the different path-planning methods are shown in 
Fig. 23. For the entire search and rescue area, both the Q-learning al-
gorithm and our algorithm achieved the maximum POSC with the 
shortest number of steps and showed better search performance and 
convergence ability. The Q-learning algorithm also showed a high level 
of performance in the initial stage of the search (Stage 1). In the middle 
stage of the search (Stage 2), the cumulative POS growth was slow, 
indicating that our algorithm is superior to the Q-learning algorithm in 
exploration and can be used more effectively in conducting priority 
search in high-probability regions. Although the traditional PA algo-
rithm can also achieve the fastest speed to complete the coverage search 
of the entire SAR area, it performs poorly in terms of the growth rate of 
POSC. The SPA algorithm achieves the improvement of search capability 
based on PA, and the BA* algorithm performed better in terms of 
prioritizing the search of high probability areas but performed poorly in 
terms of the time to complete the full-coverage search. 

Fig. 23. Comparison of the cumulative changes in the POSC between different methods for the whole search area.  
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7. Conclusions 

This study has integrated reinforcement learning into maritime SAR 
coverage path planning and establishes a maritime SARCPPF suitable for 
PIWs scenarios. This system comprises three modules, namely, drift 
trajectory prediction, hierarchical environment map modeling, and 
coverage search. Sea-area-scale drift prediction models of PIWs in the 
Chinese sea area were used based on the variations in PIWs across 
different sea areas and postures. A minimum bounding rectangle was 
used to establish a hierarchical probability environment map, facili-
tating the search for multiple SAR units. A coverage path planning al-
gorithm that leverages deep reinforcement learning was devised. 
Comparative experiments have demonstrated that the proposed algo-
rithm significantly enhances POS within a constrained timeframe. 

However, this study has certain limitations, including that it was 
assumed that the search environment remained constant during path 
planning. In future studies, the algorithm should dynamically update the 
search environment based on the SAR task performance and drifting 
conditions to improve the search accuracy. This study was conducted 
based on the assumption that the number of SAR units was sufficient. In 
the future, a detailed analysis will be conducted on the number, loca-
tion, search and rescue capabilities, as well as other characteristics of 
SAR forces, to optimize the division of search and rescue areas. In 
addition, coordinated searches using multiple SAR forces will also be 
studied. 
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