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proliferating number of satellites make management a primary
issue. In this paper, a learning adaptive genetic algorithm (LAGA)
is proposed for the Earth electromagnetic satellite scheduling
problem (EESSP). Control parameters are essential to the successful
performance of evolutionary algorithms, and their sensitivity to
the problem makes tuning parameters very time-consuming. In the
LAGA, a gated recurrent unit (GRU) neural network model is
used to control the parameters of variation operators. The neural
network model is capable of leveraging real-time information to
achieve dynamic parameter adjustment during population search.
Moreover, a policy gradient-based reinforcement learning method
is utilized to update the parameters of GRU. An adaptive evolution
mechanism is employed in LAGA for the autonomous selection
of crossover operators. Additionally, the heuristic initialization
method, elite strategy, and local search method are incorporated
into LAGA to enhance overall performance. Simulation experiments
demonstrate the effectiveness of LAGA in solving the EESSP. This
study highlights the advantages of utilizing reinforcement learning
to optimize neural network models for controlling genetic algorithm
searches. Learning adaptive planning methods can effectively ad-
dress complex problem scenarios and enhance satellite scheduling
system performance.

Index Terms— reinforcement learning, learning adaptive, con-
trol parameters, earth electromagnetic satellite scheduling, genetic
algorithm, GRU

|. Introduction

In recent years, the rapid development of satellite
technology has significantly transformed our lives. How-
ever, the surge in user demands and the proliferation
of satellites have posed significant challenges to man-
aging Earth’s electromagnetic satellite (EES) resources
[1], [2]. EES is an artificial earth satellite equipped with
antennas and signal-receiving equipment that can acquire
surface electromagnetic signal data. The ability to meet
users’ diverse detection requirements and promptly obtain
the corresponding data is crucial for satellite control.
The Earth Electromagnetic Satellite Scheduling Problem
(EESSP) is proposed in response to the challenges faced
in managing satellites. Specifically, the EESSP aims to
obtain optimal plans for a series of EESs while satisfying
various constraints. As one type of satellite task schedul-
ing problems, the EESSP necessitates meticulous model
construction and intelligent algorithm design to achieve
satisfactory plans.

In the EESSP, a series of EESs and tasks need to be
scheduled. Each satellite flies in a fixed orbit, limiting its
coverage area. The detection range of the satellite antenna
is determined by its aperture size at design time. Only
tasks within an EES’s detection range can be detected [3].
In addition, the number of tasks that can be accomplished
is severely limited by several other settings and satellite
operating conditions. Therefore, this study proposes a
mixed integer programming (MIP) model and a learning
adaptive genetic algorithm (LAGA) to solve EESSP.

Among the existing studies on the satellite scheduling
problem, the EESSP is still in its early stages of devel-
opment, while the optical satellite scheduling problem
(OSSP) has been extensively investigated [4], [5]. Both
types of problems fall under the Earth Observation Satel-
lite Scheduling Problem (EOSSP). While the EOSSP does

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. , No. 1



not require consideration of cloud cover, resolution, and
other factors like the OSSP, it necessitates a set of con-
straints closely linked to electromagnetic detection such
as detection mode, bandwidth, and polarization mode [4].
While there exist certain distinctions between these two
question types, the proposed model and method employed
to address the OSSP serves as a valuable reference for the
EESSP.

Recent studies have emerged a series of good models
and effective solutions for addressing the EOSSP. The
MIP model [6] and the constraint satisfaction problem
(CSP) model [7] are the two most common forms of mod-
els. The CSP model aims to find a feasible solution rather
than the optimal solution. However, the goal of our work
is to obtain the optimal or approximate optimal solution,
thus, to this end, MIP is more suitable for the studied
problem. Detailed research progress about the EOSSP
model is described in [8]. A series of exact solution algo-
rithms and approximate solution algorithms are proposed
for specific planning problems. The solving algorithms for
EOSSP can be divided into two categories: exact solution
algorithms and approximate solution algorithms. Among
them, the exact solution algorithm can find the optimal
solution or boundary value of the problem. However, for
the large-scale problem situations we are faced in practical
applications, the exact algorithm has the drawback of the
exponential explosion of computation time, which limits
its widespread use. Unlike exact solution algorithms,
approximate solution algorithms (including heuristic algo-
rithms, metaheuristics, etc.) are not guaranteed to find the
optimal solution. The main advantage of such algorithms
is to obtain an acceptable solution in a short time. Further,
the search performance can be improved by improvements
in algorithmic strategies, search patterns, etc. Among
the metaheuristic algorithms, genetic algorithm (GA) [9],
ant colony algorithm [10], memetic algorithm [11], and
others have been successfully tried to solve all kinds
of EOSSP problems. In this study, LAGA is elaborately
designed based on the framework of Genetic Algorithm
(GA) to cater to the characteristics of EESSP. The encod-
ing and decoding mechanism of GA can be seamlessly
integrated with the task sequencing process. Moreover,
GA exhibits remarkable global search capability and
convergence performance. In these relevant studies, it
is crucial to consider the balance between exploration
and exploitation in algorithm design. Among them, ma-
chine learning methods can enhance the adaptability of
metaheuristic algorithms to different problem scenarios
through data-driven training and learning [12], [13]. This
paper utilizes reinforcement learning (RL) to enhance the
algorithm based on the traditional genetic algorithm (GA).
In RL, the agent optimizes the parameters of the gated
recurrent unit (GRU) neural network model based on
the attributes associated with EESSP. Subsequently, the
trained GRU model is employed for dynamic adjustment
of the algorithm search.

Strategies for adjusting GA search modes are diverse.
In this study, we employ a strategy of adjusting control pa-

rameters to enhance the algorithm’s search performance.
The precise adjustment of control parameters governing
crossover and mutation plays a pivotal role in achieving
optimal solutions within the framework of GA. In general,
the crossover probability (denoted as CR) of GA is in
the interval of [0.7,0.99], and the mutation probability
(denoted as MR) is in the interval of [0.01,0.3] [14]. In the
process of solving a combinatorial optimization problem,
an effective algorithm should initially explore as many
new solution spaces as possible. However, after several
generations of evolution, the algorithm should shift to-
wards exploiting a smaller solution space. The optimal
values for these two control parameters vary depending
on the specific problem scenario and can be challenging
to determine for each instance of EESSP. To address this
situation, a novel approach is proposed by integrating
reinforcement learning with a neural network model to
control the parameters. This parameter control method
enhances the genetic algorithm (GA) and introduces an
adaptive learning capability named LAGA. LAGA aims to
minimize the cost associated with parameter tuning while
finding the optimal solution for EESSP. The proposed
algorithm employs a Gated Recurrent Unit (GRU) neural
network model to determine the control parameters, which
are trained using the reinforcement learning (RL) method.
Features related to the EESSP problem are utilized for
designing the agent’s properties in RL. Following training,
the GRU can acquire rational control parameters that fa-
cilitate the search process of LAGA. Furthermore, initial-
ization methods associated with EESSP and evolutionary
operations are also incorporated into the algorithm. The
main contributions of this paper are as follows.

1. A mixed-integer programming model is formulated
to address the EESSP problem, aiming at maximizing
the detection profit of task scheduling. The model in-
corporates constraints on satellite capabilities and task
execution requirements, while transition times between
two tasks are treated as maximization functions. By
refining the modeling with practical parameters such as
detection mode and bandwidth guarantees, this approach
demonstrates its potential for practical applications.

2. An evolutionary algorithm utilizing adaptive learn-
ing is proposed, which treats the population evolution
process as a time series and employs a GRU model
to derive control parameters for the evolution operation
based on online information prediction. A policy gradient-
based reinforcement learning training method is presented
to optimize the GRU parameters. Additionally, in LAGA,
a heuristic initialization method is designed to generate
high-quality initial populations. The adaptive crossover
mechanism is employed to achieve efficient population
exploration, while an elite strategy and a local search
method are utilized to expedite the convergence of the
iterative algorithm. Experimental results demonstrate that
the proposed approach can yield plans with high detection
profit.

The remainder of the paper is organized as follows.
Section II introduces the related work of this study.
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Section III introduces the description of EESSP and the
mathematical model. Section IV introduces the genetic
algorithm and reinforcement learning methods based on
adaptive learning. Section V verifies the performance
of the proposed algorithm through several experiments.
Section VI summarizes the conclusions obtained from the
study and introduces future research directions.

Il. Related Work

The mixed-integer programming model is a classical
model form for constructing mathematical models of
EOSSP in many studies [15], [16], [17]. Chen et al. pro-
posed a conflict metric and analyzed the interdependence
of time windows to construct a mixed-integer program-
ming model [15]. Zhu et al. used a directed acyclic graph
to represent feasible observation task plans [16]. Valicka
et al. proposed an extended two-stage and three-stage
stochastic mixed-integer scheduling model by considering
cloud uncertainty [17]. Some other model forms, such as
quadratic scheduling models and graphical models, have
also been used by researchers [18], [19].

The solution algorithm is also vital for solving the
EOSSP problem. Among many EAs, GA has strong
applicability and good global search performance. [20],
[21], [22]. Chen et al. took into consideration the sig-
nificant computational cost associated with satellite task
scheduling problems and devised a population perturba-
tion mechanism within a genetic algorithm. This mech-
anism serves to enhance the algorithm’s capability in
locating the optimal solution [23]. Li et al. used a new
encoding method in a genetic algorithm [24]. Individual
coding is utilized to determine, based on the ground
station ID, a reduction in computational complexity dur-
ing task scheduling. The applicability of algorithms to
various scenarios has been the focus of research. To
our knowledge, there does not exist any evolutionary
algorithm with a parameter control strategy to solve the
EOSSP. Reasonable parameter control can enhance the
generalization ability of the algorithm.

Besides EA, the reinforcement learning method has
also emerged as a viable approach for tackling intricate
optimization problems. Huang et al., He et al., Lam et al.,
and Ren et al. respectively employed RL to derive highly
efficient satellite observation plans [25], [26], [27], [28].
Huang et al. treated the EOSSP problem as a Markov
decision process in continuous time and constructed a
reinforcement learning algorithm based on policy gradient
[25]. He et al. employed a Markov decision process for
the completion of observation tasks assignment, followed
by utilizing a dynamic scheduling approach to derive a
specific execution plan [26]. Lam et al. learned a heuristic
algorithm structure by reinforcement learning to achieve
that some subsequent tasks can be selected after a given
part of the task solution [27]. Ren et al. designed a
block encoding reinforcement learning training algorithm
to solve the Agile EOSSP [28]. A significant amount of
training and generalizability emerge as crucial factors that

impose limitations on the application of RL. Overcoming
these limitations and maximizing the algorithm’s util-
ity becomes pivotal in designing an effective algorithm.
Consequently, hybridizing reinforcement learning with
evolutionary algorithms presents a novel approach that
effectively integrates the respective advantages of both
methods [29], [30], [31]. Although there have been many
successful practices of combining reinforcement learning
with evolutionary algorithms in numerical optimization
problems [32], [33] and combinatorial optimization prob-
lems [34], [35], [36], few studies have been done to
solve satellite task scheduling problems using this idea
[37]. Song et al. proposed a reinforcement learning-based
genetic algorithm to solve the electromagnetic detection
satellite scheduling problem [38]. The proposed algorithm
uses a reinforcement learning method to select crossover
operators.

It is apparent from the relevant literature that there
exists a paucity of research on addressing EESSP prob-
lems. Furthermore, to our knowledge, no studies have
been conducted on utilizing parameter control strategies
in algorithms to optimize performance. In this paper,
we will establish a mathematical model and propose a
learning adaptive genetic algorithm for solving the EESSP
problem.

lll. Model
A. Problem Description

Within a given scheduling horizon, a series of Earth
Exploration Satellites (EES) are required to develop task
plans for each satellite to accomplish the detection tasks
proposed by users. The magnitude of these tasks far
exceeds the capacity of all satellites, resulting in an over-
subscription issue. Additionally, the plan needs to take
into account the working capabilities, task requirements,
and other circumstances of EESs.

Each task execution must meet the users’ require-
ments, including the geographic location of the target to
be detected, detection time duration, and specific time
range. It is important to note that signal detection is
subject to satellite visibility windows and can only occur
during these periods. Furthermore, detection operations
must be carried out within the designated time frame
and duration. As the satellite moves through its de-
tectable range, the angle between the antenna and the
task changes. If this angle becomes too large, successful
completion of the task’s detection will not be possible.

After completing a detection task, an EES cannot
immediately proceed to another one. The satellite must
wait for the payload to undergo a series of configuration
adjustments to meet the requirements of the next detection
task parameters. These adjustments include changes to the
detection mode, bandwidth, frequency band, and other
parameters. The adjustment of parameter configuration
will render a portion of the time window resources
unavailable, thereby exacerbating resource scarcity and
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increasing the complexity associated with plan develop-
ment.

B. Symbols and Variables

This section introduces the variables and symbols
involved in the mathematical model.

Sat :the set of detection satellites, N5 = |Sat|, s;
denotes satellite 7;

O;: the set of orbits of the satellite 7;

9;: the maximum angle that can be detected by the
satellite 7;

T the set of detection tasks, N; = |T, task; denotes
the detection task j;

d;: required detection time length of the task j;

[rest;,rlet;]: allowable detection time range required
for task j;

¢*: the maximum allowable detection angle for task
Js

p;: the profit that can be obtained from the successful
completion of task j;

TW: the set of time windows, Ny, = [TW|;

[evtijko, lUti ko) the time window k of the task j in
on orbit o for satellite ;

t: the moment of satellite flight;

0%, angle between the satellite’s antenna and task j
at moment ¢;

E!™: function for the detection mode transition time
of satellite 7;

F?: function for the bandwidth setting transition time
of satellite 7;

Ft-f : function for the frequency setting transition time
of satellite 7;

tri};: detection mode transition time of satellite ¢
between task j and task j;

trfj ;¢ bandwidth mode transition time of satellite
between task j and task j';

tr‘i’; ;¢ frequency transition time of satellite ¢ between
task j and task j’;

try;;: transition time of satellite ¢ between task j and
task j';

I: a very large integer;

Decision variables:

Tijko: Whether satellite ¢ performs task j within kth
time window on orbit o, if it is done, x;;1, = 1; otherwise,
Tijko = 05

stijo: the start time of the satellite ¢ to perform the
task j on orbit o.

C. Mathematical Model

In this section, a mathematical model is constructed.
First, the assumptions of the model are introduced. Based
on assumptions made in [38], several specific assumptions
for EESSP are given as follows.

Assumptions:

1. The task is covered by a single satellite detection,
without the need for multiple repetitions.

2. The detection task can be carried out at most once,
without considering multiple repetitions.

3. The impact of satellite sequestration and energy on
satellite detection activities is not considered.

4. Equal value of the profit obtained by the satellite
from performing the task at any moment in the time
window.

5. The detection tasks to be performed by the satellite
are predetermined before scheduling, and there will be
no adjustment of task performance requirements during
both the scheduling and execution phases. This includes
early or late completion of task requirements as well as
temporary cancellation of tasks.

6. The satellite is capable of maintaining normal
operations throughout the entire planning time horizon.

The calculation method for the transition time of
satellite 7 between tasks j and j' is given at first. It can
be calculated as follows:

tri = F" (i) W
trijy = Fy (rj.r5) ?
trl, =F/ (Gfﬁq ¥
trijj/ — max {0, t’l”;?j/, t’r?jj/7 t'f’lf‘”/} (4)

where 77", r?, rJf denote detection mode setting require-

ment, bandwidth setting required for a task, and frequency
setting requirement for task j respectively. The maximum
time required to convert satellite parameters is defined as
the transition time.

Objective function:

We aim to identify a sequence of tasks that can
be executed within the solution space, yielding high
detection profits. Therefore, our objective function seeks
to maximize the profit generated by the task plan.

DD b wijk 5)

i€S jeJ keTW o€O;
where p; denotes the profit that can be obtained by the
successful completion of task j, x;;1, denotes whether
satellite ¢ performs task j within kth time window of orbit
o.

Constraints:

stijo < resty - Tijro,t € Sat,j € T,k € TW,0 € Oy (6)
(Stijo + dj)'mijko < rletj,i S Sat7j eT . keTW,o € 0O;

(7
Stijo < €’Utij]w . xijkoai S Sat,j eT . keTW,o € O;
8)
(Stijo + dj)'mijko < evtijko,i < Sat7j S T‘7 ke TW XS Ol
©)
0 - Tijro < min{ﬂi,ﬁ;"ax} ,i€ Sat,jeT (10)

,k‘ € TVV,O S Oi,t € [stijo,stijo + durj]

SN Y mijke < 1i€ Sat,j e T,k e TW,0€ 0
1€S k€TW o€O;
(11)
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(Stij(, + durj) * Tijko T tTijj/ < Stijlo +1- (1 — xij/klo) s
j#j,i€ Sat,j,j €T ,0€ O, kK € TW

12)
Tijko € {0,1},i € Sat,j € T,k € TW,0€ O; (13)
stijo € N,i€ Sat,j € T, k€ TW,0€ 0;  (14)

Constraints (6) and (7) indicate that the task is to be
executed within the required time range. Constraints (8)
and (9) indicate that the task needs to be executed within
the time window in which it can be detected. Constraints
(10) indicate that the angle between the satellite detection
and the task needs to be less than the maximum allowable
angular requirement. Constraints (11) indicate that each
task can only be detected at most once. Constraints (12)
indicate that the transition between two tasks needs to
meet the time requirement. Constraints (13) and (14)
ensure that decision variables need to be valued in the
corresponding ranges.

IV. The Proposed Method
A. Embedding GRU in the GA Framework

The crossover and mutation in population evolution
can be considered as a stochastic time series with evident
time-dependent characteristics. The control parameters
influence the manner and likelihood of population evo-
Iution. Hence, these two operators play a pivotal role in
determining whether the algorithm can attain the optimal
solution. Therefore, a nonlinear equation prediction ap-
proach is employed to obtain parameter configurations
that align with the search pattern. Alternatively, the
variations in control parameters throughout population
evolution can be viewed as a time series. For addressing
time series-related problems, the recurrent neural network
stands as the primary choice. The population evolution
information encompasses both current and historical data.
It is expected that the network model should allocate
greater attention to the information of recent evolutionary
generations while diminishing its focus on earlier tem-
poral evolutions. Based on the time-dependent nature of
online information, a GRU model is utilized to extract
valuable insights that can aid in GA search. The GRU
model, proposed by Cho, is a classical recurrent neural
network (RNN) that effectively addresses issues related
to long-term memory dependence and gradient explosion
when compared with traditional RNN models [39], [40].
Moreover, the GRU model requires fewer parameters and
fewer training times compared to the classical long-short
memory network (LSTM) model [41]. Each GRU model
is composed of a series of GRU units, which effectively
capture the interrelationships among data in the temporal
dimension through unit combination. The gate structure
is a unique information flow regulation mechanism for
LSTM and GRU models, as the memory gate information
is omitted from the GRU cell structure. To describe GRU
more intuitively, its specific structure is shown in Figure
1.

X,

Fig. 1: GRU unit structure

In each GRU unit, the update gate and reset gate are
used to achieve a good prediction of the time series. The
following equations can describe the GRU.

hi = (1 - zg') hl_, + 2k (15)
2 = o(W.x; + Uhy_p) (16)
h = tanh (Wx; + U (ry ® hy_1))’ 17)
= o(Wex; + Ushy_q) (18)
1
o(z) = Tre—= (19)
e? —e %
h(z)= ——— 2
tanh (z) prap— (20)

where vector h;_; and vector x; denote the input of GRU,
where h;_; € R", x;, € R?, h is the hidden layer size
and d is the dimension of the feature. U denotes the
input into a hidden space, W denotes the weight matrix,
z] denotes the update gate, r] denotes a set of reset
gates, © denotes the multiplication of the corresponding
element positions of the matrix, o (-) denotes the sigmoid
activation function, and tanh (-) is the tanh function.

In practical applications of the GRU model, the com-
plete network architecture comprises two types of neural
network structures: the GRU unit and a fully connected
network. The fully connected network is utilized after the
GRU unit to further process data streams. The complete
data stream for the GRU network model is as follows:
First, the input data is processed by several GRU units.
Then, several fully connected network layers are used to
further process the data. Finally, the Softmax function is
used to obtain the outputs.

To streamline the intermediary steps, GRU can be
abbreviated as:

H, = GRU(Sy, Hy_1, Wg) @0

where W denotes the parameter of GRU units. The fully
connected network layer can be described as:

CR; = Linear(Hy, W, b.)
MR = Linear(Hy, Wy, b))

(22)
(23)

where W., W,, denotes network parameters and b., b,
denotes bias.

According to the above network model, the current
state value S; is processed as input data to fit a combina-
tion of control parameters that will help the population
search. We denote ), = [CR;, MR;] and use such
parameters for the population evolution of the generation
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t. Once a set of parameters has been obtained, the
solution space can be explored and analyzed using these
parameters. The complete data flow can be expressed as
follows:

Q, H; = GRU(S;, Hy—1, W) (24)

After obtaining the complete data flow of the GRU
model, the process of embedding the GRU model in the
evolution process of the GA generation population can
be given. As shown in Figure 2, the symbol S in the
figure represents the selection operator, F'E represents the
fitness evaluation, C'O represents the crossover operator,
and MO represents the mutation operator. The state
information S; is the input of the GRU model. The
crossover probability C'R, and the mutation probability
MR, required for the current population evolution are
obtained through the output action of the neural network.
These two probabilities can exert a significant impact on
population exploration.

P,
CR co

Se— GRU At s } FE = Pm
¥ ] MR MO

Fe

Fig. 2: GRU embedded GA in generation ¢

B. Reinforcement Learning for Evolutionary Search

The proposed approach employs reinforcement learn-
ing to enable the GRU model to update its network param-
eters based on the population evolution process, resulting
in a parameter configuration that is more conducive to
effective population search. Specifically, the algorithm’s
population evolution process is formulated as a Markov
decision process (MDP). The RL method enables the
agent to select the appropriate action for maximizing
rewards in a dynamic environment. State, action, reward,
and transition are the fundamental components of the RL
approach. Each element of MDP will be comprehensively
introduced in this section, followed by an overview of the
policy gradient training method.

1. State

The state serves as the input to the GRU network
model, enabling the agent to make informed decisions
regarding action selection for the evolutionary process
of LAGA. To provide a comprehensive set of features
and information for optimal decision-making, it is crucial
that the state accurately reflects the current population
evolution dynamics. In our proposed algorithm, the set
of states S denotes a set of states constitutes. S can be
described as follows.

S = {So, 1, Stv .} 25)

where S; denotes the agent state value at time step ¢.
S; consists of a set of representations of task attributes

and population evolution information. The details of the
specific attribute values of the state are as follows.

Se={yt = (dj,pj ts;. 1) i =1,2,... N, ) (26)

where d; is the task duration, p; is the task profit, [;
denotes the cumulative arrangement of the task j in the
current population, and its value indicates the number of
successful placements. ¢s; denotes the range of the indi-
cated time interval, which can be calculated as follows:

ts; = rlet; — rest; 27

2. Action

Action is a fundamental component of the MDP.
The actions in reinforcement learning exhibit distinct
characteristics in continuous and discrete action spaces.
As the reinforcement learning method involves selecting
actions within a continuous action space. Therefore, the
probability density function of action A; under state S
based on the parameters 6 of the policy is obtained. As-
suming that the action probability values obey a Gaussian
distribution, the policy is expressed as follows.

m(A¢ | St) = N (A; | GRU (S;; W), 07)

RN REE))

- 2ro (St;é) op 202 (St;g)

where W denotes the parameter of the GRU model and

0= [0,, éU]T is the parameter of the strategy, which is
obtained by fitting the neural network model.

The probability density function corresponding to the
action is derived from the input state. This obtained
function conforms to the two control parameters, and by
sampling according to this probability density function,
the required values of control parameters can be obtained.

3. Reward
In our study, the reward should reflect the impact of
population evolution resulting from an action taken by
the population. As an evolutionary algorithm, changes in
optimal local solutions for the contemporary population
effectively demonstrate this effect. Therefore, we use the
percentage improvement of the current populations’ op-
timal fitness function value compared to that of previous
generations. When the population becomes worse instead
of finding a better task plan, the reward is updated in the
form of penalty. The reward reads as follows.

best __ rbest

t t—1

best
t—1

Ry = (29)
where fP¢st denotes the optimal fitness function value
in the current population and fP°5! denotes the optimal
fitness function value in the last generation population.
Higher reward values imply improved population
search performance, effectively reflecting the impact of

control parameters on the process of population evolution.
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4. Transition

The state transition records the changes in the agent’s
states, actions taken, and rewards obtained. Since the
policy gradient method is employed to train the network
model, it becomes inconsequential whether the state tran-
sition can be recorded or not. This is because the policy
gradient approach utilizes gradient descent for directly
optimizing subsequent strategies toward achieving desired
rewards. Although state shifts do not have an impact on
strategy updates, the triple of (S, A;, R;) needs to be
stored for updating the network model.

5. Policy Gradient Training Method

The training effect of the GRU network model can
significantly impact the solution of the EESSP by lever-
aging LAGA. To optimize algorithm control parameters in
continuous space, a suitable combination scheme must be
identified. The policy gradient method, a typical reinforce-
ment learning approach, is effective for optimizing model
parameters through the trajectory sampling of a batch.
Since the LAGA uses a population to search the solution
space, the batch can be replaced by the population size.

Our study employs a policy gradient approach to up-
date network model parameters by conducting a gradient
descent on the objective function of rewards. The training
process for this network is as follows:

9t+1 = Gt + (JéVgL (Ht) (30)

where VoL (0;) is the gradient of the reward function and
« is the learning rate. VoL (0;) can be further expressed
as:

T

T
VoL (6:) =Ervy, | D Vologmy (Ar]Si)Y re| (3D
t'=0 t=t’

Prior to training the network model, it is essential
to identify the objective function of the reward and
determine the trajectory. By leveraging the MDP process
constructed through population evolution, a trajectory can
be derived from states and actions. When the number
of trajectories is reached at Ny.,, the GRU network
model parameters are updated according to the agent
states, actions, and rewards using the Eq. (25)-(29). A
REINFORCE Monte Carlo method is used, then the
expectation of VLg(6) can be approximated by sampling
Ny, trajectories to obtain:

T-—1
1 ) ; ; .
VLG(Q)%Z E 7"(7—1) E Voan(AE)ZGEHSt():sg
: t=0

i=1 -

(32)
where a! denotes the value of the action belonging to the
ith trajectory at time step t.

Then, the network model parameters can be trained in
this way. The pseudo-code of the policy gradient method
is shown in Algorithm 1.

As depicted in Algorithm 1, the policy gradient train-
ing method iterates through multiple epochs for each
problem scenario. To obtain control parameters (Line
9), one epoch requires the computation of state values

Algorithm 1: Policy Gradient Training Method

Input: max epoch Epoch, population size Np, the number of
trajectories N¢rq, learning rate «, max time step
Tsma,z~
Output: Updated W.
1 Initialize the GRU model parameters W,
2 for epoch =1 — Epoch do
for tra = 1 — Nipq do
Sett <+ 1,Ho =0;
Initialize LAGA parameters;
P <Generate an initial population randomly;
while ¢ < T'S,,4. do
Get the latest state St;
Q¢ = [CR¢, M R¢] +Generate control
parameters by GRU (S, Hy—1, W);
10 P; <Population Evolution by
LAGA(Pt717 Qt, CO, MO),
11 F}; <—Calculate the fitness function value of the
new population( P );
12 R <—Calculate reward using Eq. (29);
13 t—t+1

e % N A v kW

14 | Update W using Eq. (30) and Eq. (32);

which are derived from task scheduling results and other
features. The LAGA algorithm generates new populations
(Line 10) and evaluates their fitness through population
evolution (Line 12). After completing a series of trajecto-
ries of the algorithm runs, the network model parameters
W (Line 14) are updated using the backpropagation
method.

Algorithm training through multiple epochs enables
the GRU model to acquire a range of parameter configura-
tions that yield favorable prediction outcomes. The trained
network model is then used in the LAGA presented in the
subsequent section to provide the two control parameters
MR; and CR, for the evolution of the ¢th generation
population.

C. Learning Adaptive Genetic Algorithm

The LAGA incorporates reinforcement learning tech-
niques into the genetic algorithm framework, enabling the
algorithm to assimilate valuable information gleaned from
population evolution. A trained artificial neural network
model is then utilized to provide decision support for
control parameters. The effective configuration of control
parameters enables LAGA to find the optimal solution.
During the initial stage of the search, the algorithm

i)]sIlould focus on exploring new solution spaces, while

 contrast, it is worthwhile to concentrate on a small
search area when reaching a certain stage of the search.
While utilizing the network model to acquire parameters,
an adaptive crossover approach is employed within the
genetic algorithm. This adaptive crossover technique ef-
fectively ensures the algorithm’s generalization ability and
facilitates the easy selection of operators that contribute to
discovering superior solutions. Additionally, a population
initialization method and a local search strategy have
been devised to further enhance the algorithm’s search
performance. The quality of the initial population has
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a significant impact on the performance of population
search, while local search can enhance algorithmic ex-
ploitation in the local search space.

Heuristic rules l—-{ Initialization
Fitness ]
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I
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individual

Local search?
N
Y

. Local search
selection

- randomly choose
Adaptive H two locations

Crossover

Mutation

Fig. 3: The overall framework of LAGA

Figure 3 illustrates the overall framework of the
LAGA. The proposed algorithm differs from the tradi-
tional genetic algorithm in several ways. Firstly, rather
than being manually set by designers, control parameters
are determined through a nonlinear predictive approach
utilizing an artificial neural network model. Secondly, this
algorithm incorporates multiple enhancement strategies
including population generation and evolution techniques
as well as advanced search methods that will be further
explained in subsequent sections.

1. Algorithm Overall Process

The LAGA employs a reinforcement learning ap-
proach to train the GRU model, which can provide
optimal control parameters for population evolution oper-
ators. A typical genetic algorithm framework comprises
initialization, individual selection, fitness evaluation, and
variation stages. Prior to each generation of population
search, the LAGA utilizes a trained artificial neural net-
work model to obtain two primary control parameters
based on real-time information. The adjustment of pa-
rameters allows the algorithm to choose an appropriate
search method based on environmental information. It
contributes to finding the optimal solution. LAGA is
coded using the integer number, with each gene represent-
ing a task. When decoding is carried out, the algorithm
uses the method in [38], which arranges tasks one by one.
The algorithm adopts adaptive crossover, an individual
evolution operator that selects the superior operator based
on search performance. The crossover operators dynam-
ically adjust the probability of operators by evaluating
iterative search. It is noteworthy that the algorithm can
also adapt its search strategy according to population
search performance, transitioning from exploration across
the entire solution space to exploitation of local space
for discovering better solutions. The pseudo-code of the
LAGA is shown in Algorithm 2.

Algorithm 2: Learning Adaptive Genetic Algo-
rithm

Input: population size Np, GRU parameters W, task set T',
time window set T'W, control parameter of elite
strategy T'hreq, control parameter of local search
Threa

Output: Solution

1 Initialize algorithm parameters;

2 P <—Generate initial population by Algorithm 3 and calculate
fitness;

3 Sett < 1,trig < 0,trig < 0;

4 while termination criterion is not met do

5 Get the latest state St;
6 Q¢ = [CRt, MR:], H; <Generate control parameters by
GRU (St, Ht_l,W);
fori=1— N, do
indi <Roulette chooses individuals(P);
if rand () < CR; then
10 | Perform adaptive crossover(inds);
11 if rand () < M R; then
12 | Perform mutation(indi);
13 local_best_indi,local_best <—Evaluate the fitness
function value(P);

14 Update the scores of crossover operators;
15 if local_best > gobal_best then
16 gobal_best < local_best;
17 gobal_best_indi < local_best_indsi;
18 else
19 L triqp < trip + 1;
20 if triy < Thre1 and gobal_best! = local_best then
21 L local_best_indi <+ gobal_best_indi;
22 if local_best < temp_local_best then
23 | trig < tria+1;
24 if trio == Thres then
25 new_indi <— Local search;
26 P + Update population by replacing the worst

individual with new_inds;
27 trio < 0;
28 t+—t+1;
29 temp_local_best < local_best;

As expressed in Algorithm 2, the LAGA first generates
a population of N, individuals. The initial population is
generated through a heuristic initialization method (Line
2). Upon completion of the fitness evaluation for the
initial population, the algorithm proceeds with an iterative
search for optimal solutions. In the search process, an
elite strategy (Lines 20-22) and a local search method
are used (Lines 25-29) in addition to the crossover and
mutation operators that contain the genetic algorithm. The
final detection task plan will be determined by the optimal
solution obtained from the search algorithm.

2. Initialization

The population evolution is driven by the initial pop-
ulation, and a series of selection and variation operators
are applied to obtain a high-quality plan. The population
initialization aims to strategically position individuals
within the search space while maintaining diversity. This
approach significantly reduces the number of searches
required to discover an optimal task plan. Therefore,
an algorithm is designed with a population initialization
method that combines heuristics and randomization. The
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heuristic rule is donated as UPF. UPF rule is described
as follows and the equation for the unit profit of the task
(upj) is calculated by up; = p;/d;.

Heuristic rule: Compute the unit profits of tasks and
generate an individual based on the descending order of
their index values.

If every individual in the population follows the above
heuristic rule will make the chromosome structure be-
tween individuals highly similar, which will not facilitate
the search. Therefore, a parameter 7 is used to ensure the
diversity of individuals in the population. Through the
setting of this parameter, some genes within individuals
are added to the chromosome randomly. The parameter 7
denotes the proportion of chromosomes generated accord-
ing to the heuristic rule within an individual. This part of
the task generates a chromosome, ordered according to
the heuristic rule. The rest (1-n) proportion of genes is
inserted into the existing chromosome in random positions
to form a complete individual. The pseudo-code of the
initialization method is shown in Algorithm 3.

Algorithm 3: Initialization

Input: population size N, task set T’
Output: initial Population Py
1 Setn<«0,PI=]];
2 fori=1— N, do
0 i/(Np + 1);
indi; < Select tasks using UPF(T, n);
PI <Generate a set of tasks to be inserted;
while PI # () do
L task < Random select a task from PI;

indi; <— Select a position randomly and insert task;
Remove the task from PI;

e ® 9 U R W

As expressed in Algorithm 3, a certain proportion of
chromosomes for each individual within the population is
generated according to the heuristic rule (Line 4), while
the remaining part generates a task set (Line 5) and uses
a random approach to select genes (Line 7) and insert
them to the chromosome. After generating the initial
population, the population search will be carried out.

3. Fitness Evaluation

The purpose of fitness evaluation is to enable the
LAGA to identify the parent individuals for the change
operation from the population based on individual perfor-
mance. In our EEESSP problem, our objective function
aims to maximize the profit of the detection task sequence.
Therefore, evaluating individual fitness follows a similar
approach to calculating the objective function. The spe-
cific calculation is shown in Eq. 5. The fitness evaluation
results will also facilitate the computation of RL reward
values.

4. Individual Selection

Individual selection selects individuals from the pop-
ulation according to a certain strategy. Then, offspring
will generate based on the selected individual. Individual
selection is usually done by roulette, k-tournament, etc.

In LAGA, a roulette wheel method is used to select
individuals from the population for subsequent evolution.
The equation for the roulette selection of individuals is:
o fi
"
i€P
where p; denotes the probability value of individual i
being selected, f; denotes the fitness value.

After the selection of individuals for variation,
crossover or mutation will be performed to generate
offspring. Variation plays a crucial role in achieving the
optimal solution. A comprehensive explanation of the
variation process is provided in the subsequent section.

(33)

5. Variation

Variation consists of two population evolution op-
erators: crossover and mutation. The main difference
between crossover and mutation is the degree of chro-
mosome change within an individual. The population
search is constrained by parameter control to ensure
efficient exploration and exploitation throughout the pro-
cess, enabling the algorithm to approach or reach optimal
solutions. The probability of crossover and mutation are
adjusted according to specific problem scenarios. Popu-
lation evolution can also be influenced by other factors,
such as the length of the selected gene fragment within an
individual and the type of variation. The following section
describes the specific evolution operators of crossover and
mutation.

Crossover is a frequently used population evolution
operator in genetic algorithms during the search process,
aiming to explore the entire solution space. The offspring
generated by this operator will exhibit significant differ-
ences from their parent individuals. An adaptive crossover
operation has been implemented in LAGA. This adaptive
crossover operator initializes each crossover rule with
the same score during algorithm parameter initialization.
Subsequently, weights are assigned to the rules based on
their scores, and a random selection method is employed
to choose a rule for crossover according to these weights.
This approach bears a striking resemblance to individual
selection. The equation for calculating the weights is:

. soc;
bi = W (34)

i€R
where p; denotes the probability of the ith crossover rule,
soc; denotes the score of the ith crossover rule, and R
denotes the set of crossover rules.

The crossover rules used in crossover operators are
divided into three types, two-point crossover rule, multi-
point crossover rule, and fragment flipping crossover rule,
respectively. Figure 4 gives an example of the three
crossover rules.

Two-point crossover: Two gene fragments of equal
length are obtained from two distinct loci within the
parent genome. Without altering their internal sequence,
these two fragments undergo a positional exchange to
generate offspring.
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Fig. 4: Crossover Operation

Multi-point crossover: Multiple genes are selected
from the parent, and a new gene fragment is formed
based on their relative order. Subsequently, the fragment is
randomly inserted into the remaining portion to generate
offspring.

Fragment flipping crossover: Choose the starting
and ending points of a gene fragment from the parent
sequence. A new fragment is then synthesized in reverse
order, relative to the selected region, and inserted at
the same position as its parental template to generate
offspring.

These three crossover operations have varying de-
grees of impact on the chromosomes within individuals.
However, it is challenging to determine the significance
of each crossover operator. The objective is to optimize
the effectiveness of each population’s evolution. There-
fore, upon selection and implementation of a specific
crossover operation, the algorithm updates the score for
that particular operator based on changes in individual
fitness. The updated value’s score is determined by its
search performance. If the fitness value of the offspring is
increasing compared to the fitness value of the parent, the
score is increased by pu1; otherwise, the score is increased
by 2. When a certain number of times is reached, the
weights of the crossover rules will be updated according
to the latest score value according to Eq. (34).

Compared to crossover, mutation is a simpler process
accomplished through double-point swapping. Specifi-
cally, two genes are randomly selected from a parent
chromosome and their positions are exchanged to produce
an offspring.

6. Elite Strategy

The elite strategy is specifically designed to enhance
the convergence performance of the algorithm. Following
the completion of each generation’s population search,
the most optimal individual discovered during the search
process is directly incorporated into the offspring pop-
ulation. The inclusion of an elite individual effectively
accelerates convergence speed, enabling rapid discovery
of higher-quality task plans during population searches.
When the population search reaches the threshold T'hres,
the elite strategy is no longer used.

7. Local Search

Local search (LS) is a method employed to identify
the local optimum within a specific solution space, which
can often play a pivotal role when the search proves

ineffective across the entire solution space. A 2-opt local
search operation is utilized as a simple and efficient
approach to update the neighborhood structure. In this 2-
opt procedure, two genes are randomly selected from the
best individual discovered during population search thus
far, and their positions are exchanged to generate a new
individual. A fitness evaluation and comparison process
will determine whether to continue with the local search,
which must be effectively balanced with the global search.
If too many searches are conducted, the algorithm solution
may become trapped in local optimization without escap-
ing. Therefore, when there is no further improvement in
individual fitness value, the local search stage should end
and the algorithm should return to the population search
stage. The pseudo-code of the local search is shown in
Algorithm 4.

Algorithm 4: Local Search

Input: gobal best individual gobal_best_indi, fitness of
gobal best individual gobal_best
Output: new individual new_indi
1 while termination criterion is not met do

2 gene1, genes < Random select two genes from
gobal_best_indi;

3 new_indi <— Swap two gene positions to generate a new
individual;

4 fitness < Calculate the fitness function value

(new_indi);
if fitness > gobal_best then
| gobal_best + fitness;
else
L Loop While;

® N o v

As expressed in algorithm 4, two genes are randomly
selected from the chromosome of the best individual in
the population search (Line 2), and the positions are ex-
changed to obtain offspring (Line 3). After that, the value
of the fitness function is evaluated to determine whether
to continue the local search process or to return to the
population search (Lines 5-8). The local search algorithm
will update the best individual for the population search
at the end of the algorithm.

8. Complexity Analysis

In the LAGA, the complexity of the GRU model is
O(Batch * |T|? * d), where d denotes the number of
features. The complexity of the GA algorithm population
search generation is O(Batch * |T| = [TW|), and the
complexity of the local search is O(|T'| * |TW]). Since
[TW| >> d. So the time complexity of the LAGA is
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O(Batch * |T| = [TW]). While batch uses population P
instead, the time complexity can also be rewritten as
O(|P| = |T| * |TW]).

V. Experiment
A. Experimental Setup

Experimental environment: The experiments in this
study are done on a desktop computer with Intel(R)
Core(TM) 17-7700 3.6 GHz CPU, 16 GB RAM, and
NVIDIA GeForce 2070Ti. The coding environment is
Python 3.9.7.

Comparison algorithms: The problem-solving perfor-
mance of the proposed algorithm is verified using four
algorithms, which consist of three evolutionary algorithms
and an individual search algorithm based on neighbor-
hood structure improvement. The population perturbation
and elimination strategy based genetic algorithm (GA-
PE) [23], improved adaptive large neighborhood search
algorithm with tubu search strategy (ALNS-I) [42], ar-
tificial bee colony algorithm (ABC) [43], and improved
ant colony algorithm with adaptive assignment strategy
(IACO) [44] were selected. These algorithms have been
successfully applied to solve EOSSP problems. The pa-
rameters of all algorithms are shown in Table 1. Due to the
limited space constraints of the paper, the details of the
comparison algorithms are provided in the supplementary
material.

Experimental scenarios: Scenarios with different task
scales are used to evaluate the scheduling performance
of the algorithm in all aspects. Since there is no public
benchmark for the EESSP, we use a random approach
to generate a series of scenarios. Specifically, the entire
scheduling period is 24 hours. The earliest allowed detec-
tion time and the latest allowed completion time for all
tasks fall within this range. The duration of each detection
task obeys a normal distribution with a mean of 70s and
a standard deviation of 50s. The profit obeys a uniform
distribution with a mean of 12.5 and a standard deviation
of 7.5. Tasks are chosen randomly on a global scale. One
of the satellite orbit parameters is shown in Table II. The
maximum allowable detection angle of the satellite is 80
degrees, the detection mode conversion time is 10s, the
bandwidth conversion time is 15s, and the frequency band
conversion time is 20s. The source code of LAGA and
data will be released to a GitHub repository .

To succinctly represent the scenario, the ”A-B” format
is employed to depict a given scenario. In this context,
”A” signifies the number of tasks while ”"B” denotes the
specific scenario for task-scale ”A”. During the experi-
ment, task sizes range from 100 to 1000. For the con-
venience of differentiation, the scenarios are artificially
divided into small-scale sets (denoted as Set I), medium-
scale sets (denoted as Set II), and large-scale sets (denoted
as Set III).

"https://github.com/tomsong00/LAGA

Evaluation metrics: All algorithms run 30 times in
each scenario to evaluate the algorithms’ performance.
The optimal profit (denoted as Best), the mean profit
(denoted as Mean), and the standard deviation (denoted
as Std.) are set as evaluation indicators. Based on the
data obtained, the Wilcoxon rank-sum test (denoted as
WR) is used to analyze whether the differences between
the results obtained by different algorithms are significant
[45]. In terms of the algorithm convergence performance,
it is evaluated through convergence curves. Furthermore,
the effect of the strategy used and parameter sensitivity
is analyzed.

B. Results and Analysis

Firstly, the performance of the algorithms in Set I
is verified. As shown in Table III, finding the optimal
solution in a 100 task-scale scenario is not difficult for
all algorithms used in the experiments. Moreover, the
majority of the algorithms’ search performance is stable,
and only ALNS-I still has some gap between the average
and optimal values of the profits obtained in scenario
100-4. Starting from scenarios with a 200-task scale, the
proposed algorithm can find better optimal values than
the compared algorithms. Among these comparison algo-
rithms, IACO can obtain good scheduling performance
while maintaining high stability. In addition, the WD
indicator shows that the LAGA differs significantly from
the other algorithms in most of the scenarios.

The LAGA performs as well in Set II as in Set L.
As shown in Table IV, it is evident that the optimal
performance is achieved in most scenarios, except for
a few instances where stability may be compromised.
Furthermore, there is a significant increase in the disparity
between algorithms compared to the results obtained in
Set I. In the 600 task-scale scenarios, the difference
between LAGA and other comparison algorithms’ optimal
and average profits can reach approximately two hundred.

After using Set II to validate algorithms, the task scale
is further increased and the results in Set III are shown
in Table V. The experiments on the algorithm’s solving
ability in large-scale scenarios can effectively demonstrate
the balanced performance of the algorithm’s exploration
and exploitation, as well as its application prospects. It
is apparent that the LAGA still demonstrates exceptional
performance in Set III owing to its effective amalgamation
of population exploration and local space exploitation,
which can be highly advantageous for enhancing solution
quality given the vast solution space.

To observe the solution performance of the algorithm
more intuitively, the results of the average performance of
the 300 task-scale scenarios are presented in the form of
a bar chart. As shown in Fig. 5(a)-(f), the average profit
obtained by the proposed algorithm is significantly higher
than the other three algorithms. And the search perfor-
mance of the other three algorithms is close. From the
paired statistical tests, the results obtained by LAGA are
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TABLE I: Parameters of algorithms

LAGA GA-PE [23] ABC [43] TACO [44]

ALNS-I [42] |

maximum fitness evaluation times 5000

maximum iterations for Single assignment 100

number of ants 15

influence parameter uniform [20,40]

evaporation rate 0.5

initial pheromone 100, importance 1, profit importance 2

maximum fitness evaluation times 5000
population size 10

minimum population size of search population 3
scout bee size 1

control parameter limit 20

the degree of fitness acceptance 0.9

maximum fitness evaluation times 5000
maximum iteration of no improvement 1000
percent of tasks to remove 10%

weight update parameter 0.5

coefficient of annealing 0.9975

score increment 110, 20, 30

maximum fitness evaluation times 5000
population size 10

crossover probability 0.9

mutation probability 0.05

population perturbation threshold 10

maximum fitness evaluation times 5000
population size 10

number of trajectories 10

learning rate 0.001

initial score 50, update score 30, 10
threshold 2000, 20

TABLE II: Orbital parameters of one satellite

Attributes Values
the length of semi-major axis 7000km
eccentricity 0.00015
inclination 97.672°
argument of perigee 0°

the right ascension of the ascending node  21.75°
mean anomaly 158.25°

significantly different from the state-of-the-art algorithms
at the level of p < 0.001.

In addition to statistical analysis of algorithm dif-
ferences, convergence performance is another significant
evaluation criterion for search algorithms. Convergence
curves for 800 and 1000 task-scale scenarios are analyzed.
As shown in Fig. 6. All these five algorithms have good
global search capability and can exploit solutions in the
local space. The heuristic population initialization method
used in the LAGA algorithm has a positive effect on
finding the optimal solution, and this initialization method
has outstanding performance in 1000 task-scale scenarios.
After the search process starts, the LAGA has a fast
convergence speed and can start a new search through
the search strategy after the convergence encounters a
bottleneck.

Then, a variation LAGA that uses a random way to
generate the initial population (denoted as LAGA/RI) is
used to compare with LAGA. The results for 300, 600,
800, and 1000 task-scale scenarios are shown in Figure
7(a)-(d). From the results, it can be seen that the use of
the heuristic initialization method can effectively improve
the search performance of the LAGA. This initialization
method can effectively utilize the knowledge and improve
the effectiveness of the algorithm in finding solutions
while maintaining the diversity of populations. It is clear
that as the task-scale increases, the role of the heuristic
population initialization method tends to diminish and
then increase. This is because the complexity of the prob-
lem depends more on the search process and solutions
obtained by initialization are not decentralized throughout
the solution space. Then, when the search space is large
enough, knowledge again drives the population search in
a good direction. In summary, the above experimental
results show that the LAGA performs significantly bet-
ter than other state-of-the-art algorithms in solving the
EESSP. From several metric aspects, the GA framework

combined with an artificial neural network model and
various strategies designed is effective.

For parameter T'hre;, the setting of the value affects
the scheduling performance of LAGA. Figure 8 shows
the results of sensitivity analysis for two scenarios with
different parameter settings of 1000, 1500, and 2000 at
800-1 and 800-2. For scenario 800-1, the average per-
formance of the algorithm improves as Thre; increases.
The parameter setting of 2000 is the most reasonable.
Similarly, T'hre; is set to 2000 can help the algorithm to
obtain good planning performance with little volatility in
scenario 800-2. Therefore, it is reasonable to set Thre;
to 2000.

C. Case Study

We use a real-world application case to provide a
clearer understanding of the electromagnetic detection
scenario and the algorithm planning process (see Figure
9). In a satellite system containing a total of 20 EESs,
users submit a large number of requirements to the
satellite management system every day. The system is
pre-processed and generates many tasks to be planned. In
general, the number of tasks per day is not equal. Here,
Table VI gives the number of tasks per day. Our target is
to use the algorithm to plan the electromagnetic detection
schedule for one week. The attributes of the tasks are kept
consistent with those in the experimental setup. Figure 10
shows the planning performance of the LAGA algorithm
and the heuristic algorithm (HA). The detection plan is
generated by HA through ranking tasks based on their
earliest allowable detection time, which is also the most
commonly utilized algorithm in actual satellite systems.

As can be seen from Figure 10, the LAGA algorithm
planning performs better than HA. The iterative search
enables LAGA to efficiently identify an optimal combi-
nation of detection tasks from a vast pool of options. Typ-
ically, managers make minor adjustments to the scenario
based on practical considerations. Once the final solution
is formed, the satellite management system determines
upload and downlink plans based on ground station avail-
ability. Subsequently, the system generates commands
based on each command template. Once the designated
time is reached, the satellite will execute the mission and
generate data. Subsequently, these data are transmitted to
the ground for distribution among respective users.
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TABLE III: Scheduling Results for Set I

Instance | LAGA | GA-PE [23] | ALNS-I [42] | ABC [43] | TACO [44]
nstance
| Best Mean Std. | Best Mean Std. WR | Best Mean Std. WR | Best Mean Std. WR | Best Mean Std. WR
100-1 891 891.00 0.00 891 891.00 0.00 891 891.00 0.00 = 891 891.00 0.00 = 891 891.00 0.00
100-2 805 805.00 0.00 805 805.00 0.00 805 805.00 0.00 = 805 805.00 0.00 = 805 805.00 0.00
100-3 806 806.00 0.00 806 806.00 0.00 806 806.00 0.00 = 806 806.00 0.00 = 806 806.00 0.00
100-4 819 819.00 0.00 819 819.00 0.00 819 817.80 273 - 819 819.00 0.00 819 819.00 0.00
100-5 820 820.00 0.00 820 820.00 0.00 820 820.00 0.00 = 820 820.00 0.00 = 820 820.00 0.00 =
100-6 822 822.00 0.00 822 822.00 0.00 822 822.00 0.00 = 822 822.00 0.00 = 822 822.00 0.00 =
200-1 1550 154270 465 1544 153063 557 - 1539 152947 5.66 - 1544 153487 471 - 1549 154019 473 =
200-2 1666 164803 791 1628 160533 8.6l - 1621 160453 9.01 - 1624 160790  6.34 - 1662 165168  8.14 +
200-3 1615 160827 349 1601 158657  5.63 1596 158507  5.54 1606 158847  6.05 1602 158926 5.8 -
200-4 1677 167157 455 1672 166290 4.82 - 1675 1660.50  5.61 - 1680 166447 508 - 1670 1659.81  4.67 -
200-5 1535 152370 433 1526 151613 4.80 - 1530 151633 5.65 - 1528 1519.50  5.60 - 1529 152033 442 -
200-6 1589 158193 535 1570 155317 721 - 1566 155313 592 - 1573 155823 64l - 1567 156158 573
300-1 2166 214747 856 2041 201350 1142 - 2037 201210 1066 - 2065 202080 1234 - 2109 209613 975 -
300-2 216 2199.67 809 2110 208183 1102 - 2106 208117 1L14 - 2104 208423 870 - 218 210694 833 -
300-3 211 220220 421 2107 208800 931 - 2114 208397 9.40 - 2124 200237 8.82 - 2145 213502 716 -
3004 2205 219403 742 2094 207830 830 - 2100 207463 1163 - 2105 208410  7.78 - 2152 214247 774 -
300-5 2161 214563 7.70 2051 2030.83 751 - 2057 203380 9.83 - 2066 204023 7.90 - 2077 2067.65  7.87 -
300-6 2153 213420 1046 | 2035 199463 1591 - 2049 199920 1641 - 2030 200777 1055 - 2083 207009 1092 -
+-= | 0/12/6 0/13/5 0/12/6 177110
TABLE IV: Scheduling Results for Set II
Instance | LAGA | GA-PE [23] | ALNS-I [42] | ABC [43] | TACO [44]
| Best Mean Sd. | Best Mean sud. WR | Best Mean sud. WR | Best Mean sud. WR | Best Mean sud. WR
400-1 3096 309200 278 3096 3087.20 - 3096 308810 3.96 - 3096 300040  3.67 - 3006 309143 335
4002 3252 323897 453 3236 322327 - 3237 322367 597 - 3239 323007 655 - 3244 323706 468
400-3 3305 329040  7.06 3284 3257.40 - 3270 325460 943 - 3284 326643 836 - 3287 326118 819 -
400-4 3097 309637 150 3097 3089.03 - 3007 3087.17 547 - 3097 309217 391 - 3097 307395 4.l -
400-5 3059 304930 505 3058 3040.43 - 3051 303840 612 - 3055 304487 531 - 3056 304111 505 -
400-6 3115 310563 423 3107 309127 - 3107 309060 625 - 3103 309597 458 - 3108 309492 447 -
500-1 4061 4037.67 1001 | 3046 391550 - 3946 391300 1276 - 3965 393280 1306 - 3982 397403 1292 -
500-2 3735 32400 157 3650 361837 - 3641 362090 942 - 3673 363507 1305 - 3690 367284 8.09 -
500-3 3894 387657 8.2 3774 374593 - 3768 374357 1029 - 3785 375810 1196 - 3820 380092 1092 -
500-4 3987 396880  9.67 3924 3890.30 - 3923 3888.10 1409 - 3922 390220 941 - 3936 3917.15 1008 -
500-5 3831 381067  8.06 3740 3694.00 - 3718 368820 1367 - 3740 370213 1387 - 3779 375593 1072 -
500-6 3896 388177 848 3841 381593 - 3835 3816.63 - 3850 382850 1033 - 3852 383629 886 -
600-1 4541 452623 1293 | 4399 433970 4366 433443 4380 432623 1361 423 434102 1352
600-2 4577 454937 1051 | 4344 431600 - 4386 4318.17 - 4374 433403 1397 - 4482 4469.12 1117 -
600-3 4361 434160 9.89 4197 4164.73 - 4197 416173 - 4205 418000 1298 - 4351 432837 1025 -
600-4 4575 453570 1401 | 4347 430870 - 4335 431067 323 - 4354 432997 1319 - 482 44626 1365 -
600-5 4553 452677 1248 | 4325 4256.63 - 4313 426570 1849 - 4302 427457 1475 - 4419 49217 1392 -
600-6 4580 455920 101 | 4350 429610 - 4342 429430 275 - 4347 1577 1564 - 406 438453 1475 -
| +-1= | 0/18/0 0/18/0 | 0/18/0 | 0/16/2
TABLE V: Scheduling Results for Set III
Instance | LAGA | GA-PE [23] | ALNS-I [42] | ABC [43] | TACO [44]
nstance
| Best Mean Std. | Best Mean Sud. WR | Best Mean Sud. WR | Best Mean Sud. WR | Best Mean Std. WR
800-1 6494 648120 657 6480 645777 9.26 - 6477 645557 1074 - 6475 646380 619 - 6481 647164 628 -
800-2 6389 637827 659 6371 635133 715 - 6375 635570 971 - 6379 636403 743 - 6380 636817  6.54 -
800-3 6462 645597 436 6449 643857 695 - 6462 644117 827 - 6462 644717 534 - 6462 644722 562 -
800-4 6379 636743 7.06 6374 634920 1033 - 6360 634807  7.65 - 6374 635557  8.87 - 6379 635681  7.83 -
800-5 6361 635377 435 6361 634733 557 - 6358 634743 622 - 6358 635177 412 - 6361 635281 438 -
800-6 6103 610003 322 6103 609503 444 - 6103 609567  4.33 - 6103 6099.80 276 - 6103 6097.52 401 -
900-1 7018 700747 657 6980 696353 1037 6997 696773 1233 6991 697667  7.49 7002 6981.62  7.16
900-2 7303 728740 715 7253 721740 1089 - 7246 721630 1314 - 7246 723023 823 - 7268 724304 7.93 -
900-3 7006 699250 1036 | 6942 692007 1352 - 6964 691523 1590 - 6955 693697 1033 - 6963 694262 1142 -
900-4 7070 705110 8.88 7013 698480 1408 - 7020 698387 1560 - 7016 6999.60 9.7 - 7024 700682 1001 -
900-5 7352 733997 708 7330 729920 1440 - 7341 70400 1227 - 7335 731700 827 - 7342 731806 895 -
900-6 7193 717577 824 7154 712197 1129 - 7164 713027 1750 - 7169 714523 1L16 - 7170 712682 1060 -
1000-1 8047 802427 1215 | 7918 788397 1521 - 7925 788090 1835 - 7929 790297 1246 - 7936 790215 1492 -
1000-2 8027 800453 9.7 7878 7830.87 2151 - 7881 783527 1963 - 7885 785340 1299 - 7912 785492 1152 -
1000-3 7803 7778.63 1196 | 7664 761847 1807 - 7676 762253 1942 - 7683 764380 1735 - 7743 762867 1353 -
1000-4 7926 789403 1160 | 7693 764740 1492 - 7683 764023 2093 - 771 766587 1966 - 7842 781563 1267 -
1000-5 7976 795207 1244 | 7868 784697 1229 - 7886 784933 1574 - 7894 7865.60 1377 - 7901 787429 1361 -
1000-6 8061 804477 9.07 7925 789833 1410 7945 789820 1713 7972 792070 18.18 7984 7960.95 1408
| +-= | 0/18/0 0/18/0 0/18/0 0/18/0
of parameter control methods and other optimization
TABLE VI: Number of tasks in one week strategies in enhancing GA’s exploration and exploitation
Number of day | 1 5 3 4 5 6 7 capabilities. The combination of global and local search
: enables comprehensive solution space exploration while
Task size | 200 400 600 800 1000 1000 400

D. Discussion

LAGA demonstrates excellent scheduling perfor-
mance in solving the EESSP problem, particularly for
large-scale instances. This highlights the effectiveness

focusing on regions that are likely to generate optimal
solutions. The algorithm improvement strategies are pri-
marily designed to address large-scale problem scenarios
and can be flexibly applied to simpler problem scenarios.
This implies that LAGA possesses a strong capability for
practical engineering applications. Moreover, this design
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concept is not limited to the GA framework but can also
be extended to other meta-heuristic algorithms.

VI. Conclusion

For the Earth electromagnetic satellite scheduling
problem (EESSP), we formulate a mixed-integer pro-
gramming model and propose a learning adaptive genetic
algorithm. The LAGA effectively integrates the respective
strengths of evolutionary algorithms and artificial neural
networks. Leveraging the characteristics of population
optimization, we employ a policy gradient-based rein-
forcement learning training method to train the GRU
model. The algorithm in this paper also employs a range
of enhancement strategies, in addition to artificial neural
networks, to enhance the efficiency of the algorithm’s
search process. The utilization of an elite strategy enables
the population searches to exhibit superior convergence
performance from the outset. Furthermore, a local search
method has been devised to focus on global exploration
while simultaneously identifying optimal local solutions.
The enhancement of the algorithm effectively achieves
a balance between exploration and exploitation in the
population search, facilitating the discovery of a sat-
isfactory satellite detection plan. Extensive experiments
have demonstrated the efficacy of adaptive learning meth-
ods, enabling comprehensive utilization of information
acquired from the search. Correspondingly, it can allow
the LAGA to obtain better plans. Compared to existing
algorithms, LAGA can bring a 2%-3% improvement in
profit.

In the future, we will explore alternative reinforcement
learning methods and ensemble strategies, such as em-
ploying reinforcement learning techniques to determine

Il LAGA Il HA

8000

6000

Profit

4000

2000

Fig. 10: One-week planning performance statistics

suitable operators for population evolution. Addition-
ally, reinforcement learning can be utilized to generate
offspring populations by selecting individuals from the
parent population. In the design phase of EESSP, it is
imperative to consider more intricate scenarios such as
uncertain environmental factors or potential equipment
emergencies.
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