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A B S T R A C T

The multi-objective dynamic agile earth observation satellite scheduling problem (MO-DAEOSSP) aims to
schedule a set of real-time arrival requests and form a reasonable observation plan to satisfy various criteria.
According to the requirements in practical applications, the total profit and the average image quality of
scheduled requests are taken as optimization goals in this study. Compared to manually designed heuristics and
iterative-based methods used in previous research, genetic programming based hyper heuristics (GPHH) can
automatically evolve high-quality heuristic rules (HRs) for real-time scheduling without being highly dependent
on expert knowledge. In this paper, a knowledge-transfer based multi-objective GPHH framework (KT-MOGP) is
proposed, equipped with a heuristic-based simulation considering the idle monitoring, to evolve non-dominated
HRs for solving MO-DAEOSSP. The heuristic-based simulation generates feasible schedules and returns fitness
values for given HRs, which are the individuals evolved by KT-MOGP. KT-MOGP applies a knowledge transfer
mechanism to accelerate convergence. Once a source problem is trained, its non-dominated solutions are
extracted and their feature importance is transferred to guide the initialization of another target problem,
by which the knowledge generated during the training process can be fully utilized. Experimental results on
three sets of instances show that KT-MOGP outperforms the existing GPHH-based method and that the evolved
HRs are competitive compared to several classical constructive heuristics and multi-objective evolutionary
algorithms. The results also show the effectiveness of the proposed knowledge transfer-based initialization.
To the best of our knowledge, this study is the first attempt to consider both multi-objective scenarios and
real-time arrival requests.
1. Introduction

With the rapid development of aerospace and informatization, earth
observation satellites (EOSs) have become increasingly significant in
various fields such as disaster rescue, weather forecasting, environmen-
tal monitoring and city planning [1]. The earth observation satellite
scheduling problem aims to process a number of requests (which are
proposed by different users) through onboard optical instruments while
satisfying the operational constraints [2]. For traditional EOS, the
scheduling request is mainly to select the observation window for imag-
ing it, which is the visible time window (VTW) of the request since the
EOS can only observe a request when it flies directly above the target,
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where the orbits can be forecasted in advance through trajectory pre-
diction. Trajectory prediction is an essential technique in earth science
and space geodesy, and is also a fundamental preliminary for AEOS
scheduling. Through trajectory prediction, ephemerides containing at-
tributes of every orbit can be created. Thus, the satellite information
of every moment can be obtained in advance. Once trajectory pre-
diction is completed, the orbits for a given satellite are considered
deterministic. Recent decades have witnessed the wide application of
a new generation of EOS, the agile earth observation satellite (AEOS).
As an EOS of superior capability, an AEOS equipped with flexibility
in three axes (roll, pitch and yaw) can observe a target within a longer
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VTW, providing the request with more opportunity to be executed. The
maneuvering improvement gives the AEOS a stronger ability to resolve
conflicts between requests, for that overlapped observation requests
that cannot be imaged by the traditional EOS can now be scheduled
by the AEOS through maneuvering satellite attitude angles on multiple
axes. In addition, the AEOS can perform more difficult requirements
such as stereoscopic imaging and time-series observation owing to its
advanced ability.

Although the satellite capability of the AEOS has been greatly en-
hanced compared to EOS, the scheduling issue of the AEOS (denoted as
AEOSSP) is rather difficult to solve. Unlike the EOS scheduling problem,
which is basically a selection problem, addressing an AEOSSP requires
simultaneously selecting the requests to be scheduled and determining
the start time of observation for each request. As discussed before,
the AEOS can observe a request within a longer VTW since it has
three degrees of freedom. That is, the search space of the AEOSSP
is much larger and the choice of the observation window for each
request is theoretically infinite. Apart from the difficulty of determining
the observation window, agility also introduces new constraints and
problem characteristics to the AEOSSP. Due to the time-dependent
feature of the AEOSSP, even a slight change to the observation window
of selected requests may cause drastic bidirectional propagated changes
toward the transition time between consecutive requests. In addition,
image quality can be affected by different azimuths and observing start
times. A request can be observed with the highest image quality at its
nadir point, the point at which the pitch angle is equal to zero. With all
the above analyses, it is mandatory to investigate the AEOSSP, which
has been proven to be an NP-hard problem.

During the past decades, the AEOSSP has been extensively studied,
with most of the research focused on static scheduling taking the total
observation profit as the optimization goal. Discretization models such
as the mix integer linear programming model, graph model and con-
strained optimization model are established for small-scale AEOSSPs,
and the exact method and several commercial solvers are adopted.
Some of the early research viewed the AEOSSP as a variant of other
classical combinatorial optimization problems, including the vehicle
routing problem (VRP) [3,4], traveling salesman problem (TSP) and
parallel machine scheduling problem [5]. Metaheuristics and problem-
targeted heuristics are applied to this problem including tabu search [4,
6], local search [7], iterated local search [8,9], adaptive large neighbor-
hood search algorithm [10,11], genetic algorithms [12–14], ant colony
optimization (ACO) [15], and priority-based heuristics [16,17] also
have shown remarkable performance. For more details, refer to the
introduction in [1]. All of the above studies treat the AEOSSP as a
single-objective problem, neglecting other optimization goals in prac-
tical applications. There are some researchers working on the AEOSSP
considering multiple criteria. Tangpattanakul et al. [18] are the first to
establish a multi-objective AEOSSP (MO-AEOSSP) model, considering
the fairness between users and the total profit simultaneously. From
then on, there appear some related studies on the MO-AEOSSP con-
sidering different problem characteristics, including the preference of
the decision-maker [19,20], the data transmission process [21] and the
load-balance degree [22]. In summary, most of the previous studies
made efforts to maximize the total profit of the scheduled requests in
the static AEOSSP. There are also a few studies that consider other
objectives in real-world applications, but most of their studies are still
based on certain scenarios where the scheduling environment does not
change.

Despite the numerous studies focus on conventional AEOSSP under
a deterministic environment, the scheduling of the AEOS is always
a process full of uncertainties, such as new request arrivals, break-
down of optical sensors and cloud obscuration [23]. He et al. [15]
studied the scheduling problem of the AEOS considering dynamic
cloud coverage and designed a hierarchical scheduling mechanism.
A specific ACO approach was then proposed and showed outstand-
2

ing performance in various dynamic scenarios. Cui and Zhang [24]
addressed the scheduling problem of EOS requiring emergency re-
sponse and designed a mission priority-based scheduling method to
address the dynamic arrival of emergency requests. Povéda et al. [25]
discussed the uncertain factors brought by weather and future in-
coming requests in satellite scheduling. To optimize request priorities,
the potential of evolutionary algorithms based on local search and
Population-Based Incremental Learning (PBIL) is investigated in their
work. Yang et al. [26] considered the real-time response of emergent
scheduling requests and proposed a dynamic-distributed organizational
structure, then proposed a improved ICNP and BM mechanism to
coordinate satellites. Li et al. [27] adopted an reactive method for the
scheduling of spacecraft observations under uncertainties and designed
a improved adaptive hybrid ACO algorithm. Kramer and Smith [28]
studied the problem of dynamic satellite rescheduling and proposed an
iterative repair strategy-based dynamic method equipped with several
heuristic rules. Wang et al. [29] considered a multi-objective dynamic
real-time scheduling scenario of the conventional EOS, taking maxi-
mizing the scheduling revenue and minimizing the perturbation while
scheduling as optimization targets. A novel dynamic method DMTRH
was presented equipped with some merging policy and task retract-
ing operation, with which part of the conflicts between tasks can be
resolved and the satellite resource utilization can be better enhanced.
Most of the previous studies decomposed dynamic AEOSSPs into multi-
stage static AEOSSPs with manually designed heuristics used to insert
newly arrival observation requirements. However, manually designed
heuristics may have some inherent weaknesses, for they highly rely on
the prior knowledge of professionals [30]. Although there are some
iterative-based schemes which can improve solution quality, their time
cost is often unacceptable for dynamic environments.

According to the above review, despite various studies on the
AEOSSP, so far no one has ever considered multiple criteria and the
uncertainty of the AEOSSP at the same time. In this study, we focus on a
specific MO-AEOSSP considering dynamic arrival observation requests
(MO-DAEOSSP), which need not only to optimize two objectives simul-
taneously (the total profit and the average image quality of scheduled
requests) but also to handle the random arrival of observation requests
in real-time. To our knowledge, this study is a new attempt that fits
practical applications.

Obviously, dynamic arrival observation requests introduce more
difficult and uncertain characteristics. Most of the methods applied
to static AEOSSP are no longer suitable for this study since requests
cannot be known in advance before they arrive. During the decision
process, the agility, the time-dependent feature and the uncertainty of
scenario need to be considered synthetically, which further complicates
the problem. Regarding the optimization criteria, the total profit and
the average image quality are conflicting objectives. The former has
been studied sufficiently by various single-objective and multi-objective
AEOSSP research, while the latter defines the quality of the scheduled
imaging tasks observed by the AEOS. For the sake of obtaining a higher
total profit, it is necessary to accomplish the observation requests as
much as possible within the capabilities of the AEOS. But the increase in
the number of scheduled requests may lead to a decrease in the average
image quality of the whole schedule, since the severe conflict between
requests makes many requests unable to be observed at the moment
when they can obtain the best image quality. Previous studies [9–11]
involving analysis of image quality show that in most cases, a request
can gain its picture with the best quality at the nadir point. That is,
the quality of a given request is determined by the pitch, roll, and yaw
when it is observed. Based on the aforementioned analysis, the image
quality can be transformed into a time-dependent objective.

Fig. 1 is presented to better illustrate the relationship between the
objectives. In the figure, 𝑟𝑖 represents observation request and 𝑇 𝑟𝑖𝑗 is
he transition time from 𝑟𝑖 to 𝑟𝑗 . If all the requests are observed in their

nadir point, only 4 requests can be observed as the top part of Fig. 1
shows. More requests can be scheduled as the bottom part shows. There

is enough transition time (𝑇 𝑟15, 𝑇 𝑟52) and observation window for 𝑟5
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Fig. 1. A simple example of the conflicting objectives. To maximize the average image quality of solution, requests are observed at their nadir point and only four requests can
be executed. On the contrary, if the scheduling goal is to maximize the number of scheduled requests, six requests can be observed, but their image quality is inferior accordingly.
to be inserted if the observations of 𝑟1 and 𝑟2 are rearranged. Similarly,
𝑟6 can be scheduled by rearranging the observations of other requests.
In this way, more requests can be scheduled, but not all of them can
be observed with the best image quality.

To overcome the above issue, formulating the problem as a timeline-
based scheduling problem and applying heuristic rules (HRs) to make
real-time decisions is a promising alternative. Manually designing HRs
requires extensive prior expertise, and for multi-objective problems,
it becomes more complicated and time-consuming. Genetic program-
ming (GP) seems to be an effective hyper-heuristic approach since it
automatically generates superior HRs for scheduling. In fact, recent
years have witnessed the application of GP-based hyper-heuristics in
combinatorial optimization problems [31]. The hyper-heuristic aims
to produce approximate optimal heuristics for addressing problems
efficiently, and GP has been widely applied to evolve dispatching rules
(DRs) for various scheduling problems in manufacturing and producing
including machine scheduling [32–34], job shop scheduling [31,35]
and flexible job shop scheduling [36–38]. Especially for the dynamic
flexible job shop scheduling (DFJSS) [36,37,39–41], the routing and
sequencing rules evolved by Genetic Programming Hyper-Heuristic
(GPHH) have achieved better performance than the manually designed
DRs, for both single-objective and multi-objective DFJSS. In the field
of satellite scheduling, Zhang et al. [42] attempted to apply the GP to
a static AEOSSP, evolving constructive heuristics by a GP-based evo-
lutionary approach (GPEA). The obtained heuristic algorithms exhibit
fine performance and can even outperform published sophisticated
meta-heuristic algorithms.

Inspired by the successful application of the multi-objective hyper-
heuristic, we propose a knowledge-transfer based multi-objective GP
algorithm (KT-MOGP) to solve the MO-DAEOSSP. We first design a
heuristic-based simulation, which constructs discrete event simulations
and generates feasible schedules for fitness evaluation of HRs. Then
a Pareto-based multi-objective GPHH is developed to evolve the HRs.
During the training of the KT-MOGP, knowledge-transfer methods in-
cluding elite tree transfer and feature importance transfer are adopted
to enhance the efficiency. The initial problem that has the smallest
number of candidate requests is taken as the initial source problem. The
non-dominated solutions of the trained source problem are extracted
and transferred to guide the initialization of the next to be trained
3

problem together with their feature importance. After that, the newly
trained problem is used as the source of the next problem to-be-
trained for feature extraction and knowledge transfer, and so on. To
increase the diversity of knowledge, a duplicate removal mechanism is
proposed.

For the heuristic-based simulation, two statuses for a working AEOS
are defined, the idle monitoring status and the request execution status.
During the idle monitoring, a candidate request to be scheduled next is
first selected among the arrived requests by an HR and the start time
for the request is determined. After a request is selected, it needs to
wait until the system time reaches the determined start time. During
the waiting period, once a new request arrives, the previous steps
should be repeated to reselect the request to process next and update
the start time. That is, the to-be-scheduled request may be replaced
by new requests. The AEOS switches to the request execution status
when the time reaches the start time of the selected request, updates
the scheduling plan and the current system state, and then turns to the
idle monitoring status again.

More specifically, the main contributions of this work are as follows:

• The proposal of a specific MO-AEOSSP considering dynamic ar-
rival observation requests, which is the first attempt at this prob-
lem under a new practical scenario.

• The mathematical model and two practical optimization objec-
tives are described. Based on them, the problem is formulated as
a timeline-based scheduling process.

• A GPHH-based multi-objective algorithm (KT-MOGP) is proposed,
equipped with a two-status heuristic-based simulation and a
knowledge transfer mechanism.

• The KT-MOGP and its evolved HRs are evaluated on various
instances and show remarkable performance regarding scenarios
of both multi-objective and single-objective.

The rest of this article is organized as follows. The MO-DAEOSSP is
given and the mathematical model is presented in Section 2. Section 3
describes the proposed KT-MOGP and the specific heuristic-based sim-
ulation. Computational results and analysis are provided in Section 4.
In Section 5, the conclusion and future work are drawn.
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2. Multi-objective dynamic agile earth observation satellites
scheduling problem (MO-DAEOSSP)

2.1. Problem description and assumptions

The AEOSSP is an oversubscribed planning and scheduling problem,
aiming to generate feasible and reasonable working plans for an on-
orbit satellite. In this work, a dynamic version of AEOSSP is considered,
which needs to decide the observation targets to be scheduled and
determine the start time for each target while the observation requests
are randomly arriving. During the optimization process, two objective
functions are taken into account to guarantee the total profit and the
average image quality of the obtained working plan.

Some reasonable simplifications and assumptions are proposed as
below:

• The data download process and charging process are neglected in
this study.

• All the requests considered in this paper are targets which can be
observed in one pass. Polygons and large area requirements are
not discussed, nor are task merging and decomposition.

• The satellite can only image one target at a time and once the
observation starts it cannot be preempted by any other event.

• The dynamic event studied in this paper is the dynamic arrival of
observation requests, thus other events such as the breakdown of
satellites or the cloud obscuration are not discussed.

.2. Notations and variables

The observation requests which arrive in real time are taken as the
nput, denoted by 𝑅 = {𝑟1,… , 𝑟𝑁}. Note that the requests are unknown

before arrived. In other words, information including both the arrival
time and the attributes are not known until requests arrive. Thus, the
dynamic request in this paper cannot be precalculated as many previous
studies [9,10] do. For each request 𝑟𝑖 ∈ 𝑅, several parameters are
defined:

• 𝑖: the identifier for 𝑟𝑖
• 𝑝𝑖: the profit earned if 𝑟𝑖 is observed
• 𝑎𝑖: the arrival time of 𝑟𝑖
• 𝑑𝑢𝑖: the duration for observing 𝑟𝑖. Only if 𝑟𝑖 has been observed for
𝑑𝑢𝑖 can it be regarded successfully executed;

• 𝑇𝑊𝑖 = {𝑡𝑤𝑖1,… , 𝑡𝑤𝑖𝑗 ,… , 𝑡𝑤𝑖𝑛𝑖}: the set of visible time windows
(VTW) for 𝑟𝑖, where 𝑡𝑤𝑖𝑗 means the 𝑗th VTW of 𝑟𝑖 and 𝑛𝑖 is the
number of VTWs. Note that the same request may be served from
two orbits, but there is at most one VTW for the request in the
same orbit.

Variables for a VTW 𝑡𝑤𝑖𝑗 are given as below:

• 𝑡𝑠𝑖𝑗 : the start time of 𝑡𝑤𝑖𝑗

• 𝑡𝑒𝑖𝑗 : the end time of 𝑡𝑤𝑖𝑗

• 𝑜𝑖𝑗 : the index of orbit in which 𝑡𝑤𝑖𝑗 is located
• 𝑡𝑏𝑞𝑖𝑗 : the time at which the best image quality of 𝑟𝑖 can be

obtained, which is the nadir point of the 𝑡𝑤𝑖𝑗 as discussed in [9,
11]

• 𝑡𝑤𝑞𝑖𝑗 : the time at which the worst image quality of 𝑟𝑖 can be
obtained

• 𝐴𝑖𝑗 = {(𝛾𝑡, 𝜋𝑡, 𝜙𝑡)|𝑡𝑠𝑖𝑗 ≤ 𝑡 ≤ 𝑡𝑒𝑖𝑗} : the corresponding attitude angles
(pitch, roll, yaw) at any time 𝑡 in the time window 𝑡𝑤𝑖𝑗

The attributes of the satellite and the scheduling environment are
defined:

• [𝑆𝑇 ,𝐸𝑇 ]: the scheduling horizon of the AEOS
• 𝑂 = {𝑜1,… , 𝑜𝑚} : the set of orbits, which is calculated by the
4

satellite orbit trajectory prediction
• 𝑜𝑘 = [𝑜𝑡𝑙𝑠, 𝑜𝑡𝑙𝑒]: the start and end time of the 𝑙th orbit

Here we define the decision variables in this study:

• 𝑥𝑖𝑗 =
{

1, 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑟𝑖 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖𝑛 𝑖𝑡𝑠 𝑗 th 𝑉 𝑇𝑊
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• ℎ𝑖: start time for observing 𝑟𝑖 if 𝑟𝑖 is selected.

.3. Objective functions

max 𝑓1 =
𝑁
∑

𝑖=1

𝑛𝑖
∑

𝑗=1
𝑥𝑖𝑗 ⋅ 𝑝𝑖

/ 𝑁
∑

𝑖=1
𝑝𝑖 (1)

max 𝑓2 =
𝑁
∑

𝑖=1

𝑛𝑖
∑

𝑗=1
𝑥𝑖𝑗 ⋅𝑄(𝑟𝑖)

/ 𝑁
∑

𝑖=1

𝑛𝑖
∑

𝑗=1
𝑥𝑖𝑗 (2)

Eqs. (1) and (2) represent the objective functions in this study,
aximizing the total profit and maximizing the average image quality

f scheduled requests. 𝑄(𝑟𝑖) represents the image quality of request 𝑟𝑖:

(𝑟𝑖) = 10 − 9 ⋅
|ℎ𝑖 − 𝑡𝑏𝑞𝑖𝑗 |

|𝑡𝑤𝑞𝑖𝑗 − 𝑡𝑏𝑞𝑖𝑗 |
(3)

The image quality 𝑄(𝑟𝑖) for 𝑟𝑖 is within the interval [1, 10] and is
calculated depending on ℎ𝑖, 𝑡𝑏𝑞𝑖𝑗 and 𝑡𝑤𝑞𝑖𝑗 if 𝑟𝑖 is executed within of
𝑡𝑤𝑖𝑗 .

.4. Constraints

The following constraints are given to define feasible sequence of
O-DAEOSSP:

• A request 𝑟𝑖 is not considered in the scheduling process or the
candidate request queue until it arrives (the system time reaches
𝑎𝑖).

• The VTWs for any request is not visible until it arrives.

𝑡𝑠𝑖𝑗 ≤ 𝑎𝑖,∀𝑡𝑤𝑖𝑗 ∈ 𝑇𝑊𝑖 (4)

• Each request can be observed at most once during the scheduling
horizon.
𝑛𝑖
∑

𝑗=1
𝑥𝑖𝑗 ≤ 1,∀𝑟𝑖 ∈ 𝑅 (5)

• The observation of one request must be inside one of it corre-
sponding VTWs.

ℎ𝑖 ≥ 𝑡𝑠𝑖𝑗 , 𝑖𝑓
𝑛𝑖
∑

𝑗=1
𝑥𝑖𝑗 = 1 (6)

ℎ𝑖 + 𝑑𝑢𝑖 ≤ 𝑡𝑒𝑖𝑗 , 𝑖𝑓
𝑛𝑖
∑

𝑗=1
𝑥𝑖𝑗 = 1 (7)

• Any two requests cannot overlap with each other and there
must exist enough time for the AEOS to adjust the maneuvering
attitude.

ℎ𝑖 + 𝑑𝑢𝑖 + 𝑇 𝑟𝑖𝑘 ≤ ℎ𝑘, 𝑖𝑓
𝑛𝑖
∑

𝑗=1
𝑥𝑖𝑗 ,

𝑛𝑘
∑

𝑗=1
𝑥𝑖𝑘 = 1 (8)

• The satellite attitude transition time 𝑇 𝑟𝑖𝑘 from request 𝑟𝑖 to re-
quest 𝑟𝑘 can be calculated by the following piecewise linear
function:

𝑇 𝑟𝑖𝑘 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

11.66, 𝛥𝜃 ≤ 10

5 + 𝛥𝜃∕𝑣1, 10 ≤ 𝛥𝜃 ≤ 30

10 + 𝛥𝜃∕𝑣2, 30 ≤ 𝛥𝜃 ≤ 60

16 + 𝛥𝜃∕𝑣3, 60 ≤ 𝛥𝜃 ≤ 90

22 + 𝛥𝜃∕𝑣4, 𝛥𝜃 ≥ 90

(9)

where 𝑣1, 𝑣2, 𝑣3, 𝑣4 are angular transition velocities and 𝛥𝜃 =
𝛥𝛾 + 𝛥𝜋 + 𝛥𝜙 .
| | | | | |
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Fig. 2. The overall framework. The KT-MOGP consists of two parts, namely GP based hyper heuristic approach for evolving HRs, and fitness evaluation for each HR, which
simulates the scheduling process of the dynamic AEOSSP and returns scheduling plan and objective values based on a given heuristic.
3. Knowledge transfer based multi-objective genetic programming
algorithm (KT-MOGP) for MO-DAEOSSP

3.1. The overall framework of KT-MOGP

Fig. 2 shows the framework of KT-MOGP. Similar to GPHH-based
methods for addressing other scheduling problems, the proposed algo-
rithm in this study also includes a simulation stage and an evolution
stage. In the simulation stage, a meta-algorithm is designed to evaluate
the fitness of HRs. The right part of Fig. 2 shows the scheduling decision
making process of the MO-DAEOSSP. The individuals obtained from
evolution stage are first decoded into HRs. Then feasible scheduling
plans and corresponding objective values are output based on the
HRs and instances. The detailed scheduling decision making process
is elaborated in Section 3.2.

In the evolution stage, a GPHH with knowledge transfer mechanism
is adopted to evolve HRs for the MO-DAEOSSP. Since this study con-
siders a multi-objective problem, the non-dominated sorting scheme of
the NSGA-II is used in the population selection. Based on the fitness
value returned from the heuristic-based simulation, the individuals
are evolved through several offspring generating and reproducing op-
erations. At the end of the evolution stage, a knowledge extraction
module collects the knowledge of elite individuals and feature contri-
butions from the output population, then applies them as transferred
knowledge to guide the population generation of evolution for other
scenarios. To prevent overfitting, the training instances used in the
simulation stage are changed every few iterations. The utilized GPHH
and knowledge transfer method is illustrated in Section 3.3.

3.2. The Heuristic-based simulation in KT-MOGP

The heuristic-based simulation in KT-MOGP is a timeline-based
decision process, which generates feasible schedules and returns fitness
values. Since the information of a request cannot be acquired before
it arrives, the decision points of the scheduling process cannot be
generated in advance as Zhang et al. [42] did. Instead, the decision-
making process or updating operation is triggered related to newly
arrived requests.
5

Given a DAEOSSP instance and a heuristic rule 𝐻𝑅, the decision
process can be implemented as below. At the beginning of the schedul-
ing horizon, there may exist several requests. The 𝐻𝑅 is first applied
to calculate the priority of each request then select the request with
the highest priority as the next request to be scheduled 𝑟𝑛𝑒𝑥𝑡. Based on
current system state 𝑆𝑡 = {𝑡, 𝑜𝑡, 𝜃𝑡}, the start moment of 𝑟𝑛𝑒𝑥𝑡 is decided
as ℎ𝑛𝑒𝑥𝑡. Then, system stays in a monitoring status before time 𝑡 reaches
ℎ𝑛𝑒𝑥𝑡, that is, if a new request arrives during this period, 𝐻𝑅 will be
called again to determine whether to replace the current 𝑟𝑛𝑒𝑥𝑡 with the
newly arrived request. Note that the feasibility of 𝑟𝑛𝑒𝑥𝑡 and ℎ𝑛𝑒𝑥𝑡 has
been validated during the implementation of 𝐻𝑅. If the newly arrived
request has a higher priority than 𝑟𝑛𝑒𝑥𝑡, the new request will be set to
𝑟𝑛𝑒𝑥𝑡 and ℎ𝑛𝑒𝑥𝑡 should be updated according to the new 𝑟𝑛𝑒𝑥𝑡. The system
switches to scheduling status when 𝑡 reaches ℎ𝑛𝑒𝑥𝑡. In this status, the
scheduling plan 𝑆𝑐ℎ, system state 𝑆 and the set of arrived candidate
requests 𝑅𝑎𝑟𝑟𝑖𝑣𝑎𝑙 are updated while 𝑟𝑛𝑒𝑥𝑡 and ℎ𝑛𝑒𝑥𝑡 are reset.

Since the problem in this study is a multi-orbit DAEOSSP, the
scheduling horizon of the decision process is divided into several stages
according to the predicted satellite orbit trajectory, and orbit switching
is performed as the system time 𝑡 advances. Specifically, when 𝑟𝑛𝑒𝑥𝑡
cannot be selected under the current 𝑆𝑡 and 𝑅𝑎𝑟𝑟𝑖𝑣𝑎𝑙, or 𝑡 reaches the end
of current orbit 𝑜𝑡𝑙𝑒 without newly arrived requests, the system time 𝑡
is switched to the start time of next orbit 𝑜𝑡(𝑙+1)𝑠 with 𝑆𝑡 and 𝑅𝑎𝑟𝑟𝑖𝑣𝑎𝑙 are
then updated.

In this heuristic-based simulation, each output schedule 𝑆𝑐ℎ con-
tains a series of request execution events 𝜎, i.e. 𝑆𝑐ℎ = (𝜎1, 𝜎2...), where
each 𝜎 = ⟨𝑟𝜎 , ℎ𝜎 , 𝑑𝑢𝜎 , 𝜃𝜎 , 𝑝𝜎 , 𝑄𝜎⟩ is characterized by its request 𝑟𝜎 , start
time ℎ𝜎 , duration 𝑑𝑢𝜎 , attitude angle 𝜃𝜎 = (𝛾𝜎 , 𝛿𝜎 , 𝜙𝜎 ), profit 𝑝𝜎 and
image quality 𝑄𝜎 . System state is a tuple 𝑆𝑡 = ⟨𝑡, 𝑜𝑡, 𝜃𝑡⟩ consist of current
time 𝑡, current orbit 𝑜𝑡 and attitude angle 𝜃𝑡. The heuristic rules 𝐻𝑅𝑠 are
depicted by individuals in the evolution stage of the KT-MOGP, whose
representation will be fully described later.

Algorithm 1 indicates the process for evaluating heuristic rule. For
a given instance and heuristic rules, feasible scheduling solutions and
corresponding objective values can be output by applying Algorithm
1. Lines 3 to 5 are the initialization of the whole scheduling. Note that
orbits in this study can be regarded as independent scheduling horizons.
Each orbit can be divided into sunshine interval and shade interval,
where only in the sunshine can the satellite accomplish observation.
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Fig. 3. An example of the heuristic rule for DAEOSSP. Based on the given index of nodes in 3(b), the matrix representation of 𝐻𝑅 is shown in 3(c). ‘‘Floor’’ attribute represents the
level of the tree where the node is located, ‘‘parent’’ denotes the upper-floor node connected to the current node, ‘‘left’’ and ‘‘right’’ is the next-floor nodes connected. Specifically,
when the current node has no successor nodes, ‘‘left’’ and ‘‘right’’ are set to −1.
Algorithm 1 The heuristic-based simulation of DAEOSSP
Input: A DAEOSSP instance, a heuristic rule 𝐻𝑅
Output: A feasible schedule 𝑆𝑐ℎ
1: All requests are not completed, the schedule 𝑆𝑐ℎ is empty
2: while 𝑡 ≤ 𝐸𝑇 do
3: 𝑙 ← 1 // Start from the first orbit
4: 𝑡 ← 𝑜𝑡𝑙𝑠
5: Update the set of arrived requests 𝑅𝑎𝑟𝑟𝑖𝑣𝑎𝑙 and current system

state 𝑆𝑡
6: 𝑟𝑛𝑒𝑥𝑡 ← ∅ // The next request to be scheduled
7: if 𝑟𝑛𝑒𝑥𝑡 = ∅ then
8: while 𝑅𝑎𝑟𝑟𝑖𝑣𝑎𝑙 = ∅ do
9: Extract the next arrived request 𝑟′

10: if 𝑎′ ≥ 𝑜𝑡𝑙𝑒 or 𝑟′ = ∅ then
11: // Switch to the next orbit
12: 𝑙 ← 𝑙 + 1
13: 𝑡 ← 𝑜𝑡𝑙𝑠
14: Update 𝑆𝑡, 𝑅𝑎𝑟𝑟𝑖𝑣𝑎𝑙
15: else
16: 𝑡 ← 𝑎𝑖

17: 𝑅𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ← 𝑟′

18: Update 𝑆𝑡
19: end if
20: end while
21: [𝑟𝑛𝑒𝑥𝑡, ℎ𝑛𝑒𝑥𝑡] ← 𝐻𝑅(𝑅𝑎𝑟𝑟𝑖𝑣𝑎𝑙 , 𝑆𝑡, 𝑆𝑐ℎ)
22: else
23: while 𝑡 < ℎ𝑛𝑒𝑥𝑡 do
24: Extract the next arrived request 𝑟𝑖
25: if 𝑎′ < ℎ𝑛𝑒𝑥𝑡 then
26: // Monitoring
27: 𝑅𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ← 𝑅𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ∪ 𝑟′

28: [𝑟𝑛𝑒𝑥𝑡, ℎ𝑛𝑒𝑥𝑡] ← 𝐻𝑅(𝑅𝑎𝑟𝑟𝑖𝑣𝑎𝑙 , 𝑆𝑡, 𝑆𝑐ℎ)
29: else
30: // Scheduling
31: 𝑆𝑐ℎ ← 𝑆𝑐ℎ ∪ 𝑟𝑛𝑒𝑥𝑡
32: 𝑡 ← ℎ𝑛𝑒𝑥𝑡 + 𝑑𝑢𝑛𝑒𝑥𝑡
33: Update 𝑆𝑡, 𝑅𝑎𝑟𝑟𝑖𝑣𝑎𝑙
34: 𝑟𝑛𝑒𝑥𝑡 ← ∅
35: end if
36: end while
37: end if
38: end while

In the shade interval, the satellite releases the occupied resource to
prepare for the next orbit. Because of the above reasons, the orbit in this
study refers specifically to the sunshine interval. The satellite switches
to the start time of the next orbit after the observation in the sunshine
of one orbit, which is stated in Lines 10 to 14.
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In Algorithm 1, 𝑅𝑎𝑟𝑟𝑖𝑣𝑎𝑙 and 𝑆𝑡 is updated as below:

• Regarding 𝑅𝑎𝑟𝑟𝑖𝑣𝑎𝑙, first find all requests that have already arrived
and are in the current orbit, then delete or clip the conflicting
VTWs whose current time 𝑡 exceeds its end time or conflicts with
existing scheduled requests in 𝑆𝑐ℎ.

• Based on the last scheduled request in 𝑆𝑐ℎ and current system
time 𝑡, the current attitude angle 𝜃𝑡 and orbit 𝑜𝑡 for 𝑆𝑡 can be
determined.

3.3. The genetic programming hyper Heuristic (GPHH) in KT-MOGP

In the GPHH of the KT-MOGP, the HRs to be evolved for fitness
evaluation are represented as list trees. Different from standard GPHH
for single-objective, this study considers heuristic rule training in multi-
objective scenarios, and the DAEOSSP is complex and difficult to solve.
Therefore, to improve the training efficiency, some knowledge transfer
strategies for extracting elite individuals and the feature contribution
are introduced. Besides, to enhance the diversity of population so that
new regions which have not been explored can be better searched, a du-
plicate removal mechanism is introduced by utilizing the characteristics
of list tree to delete duplicate individuals.

3.3.1. Individual representation and initialization
As mentioned above, individuals in the evolving population of

KT-MOGP are heuristic rules for decision-making, which are used to
calculate the priority of each candidate request. These individuals are
described as tree representations in this study. Fig. 3 depicts a simple
individual example.

The 𝐻𝑅 in Fig. 3(a) is (𝐴+𝐵)×|𝐶|, three feature terminals and three
operators are adopted as drawn in Fig. 3(b). The tree representation
can also be transferred into a matrix formation in Fig. 3(c), the specific
position of each node can be described by establishing links.

A growth method is implemented to generate the initial population
of KT-MOGP without any prior transferred knowledge. With the limited
maximum depth of the tree representation, each node of the tree is
randomly selected among the sets of features and operators.

When there exists an output population of 𝐻𝑅 from a previous
scenario, we apply the knowledge transfer mechanism to extract the
elite individuals and calculate the feature contribution of each feature
terminal, then set them to guide the training of 𝐻𝑅 in other scenarios.
This part will be explained in detail later.

3.3.2. Genetic operations
The genetic operations of the KT-MOGP include selection, crossover,

mutation and population reproduction.

• Selection: Before selecting individuals, the non-dominated sort-
ing and crowding distance calculation of NSGA-II [43] is adopted
to sort the given population. Then a tournament selection is
used to select individuals to form the mating pool for offspring
generation.
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Fig. 4. An example of crossover operator in KT-MOGP.

Fig. 5. An example of mutation operator in KT-MOGP.

• Crossover: Sub-tree crossover is used in this study. As shown
in Fig. 4, two parents are selected from the mating pool, a
crossover point is randomly sampled on each tree. Then the sub-
tree of parent 1 containing root node and the sub-tree of parent 2
containing external points are combined to form a new individual.

• Mutation: The single-point mutation is used in this study. As
shown in Fig. 5, a parent is selected and a mutation point is
randomly sampled. Then the new individual is produced by re-
combining the parent tree and another randomly generated new
sub-tree at the mutation point.

• Population reproduction: At the end of each iteration, the
parent population and new offspring individuals generated by
the above genetic operation recombine to form a new popula-
tion. When performing reproduction, non-dominated sorting and
crowding distance are applied to select individuals.

3.4. Knowledge transfer-based initialization

As illustrated in Fig. 2, after completion of the evolution stage,
we perform some knowledge extraction operations on the final output
population. Specifically, the elite individuals in the final population
7

are extracted, and the contribution of feature terminals is measured.
This information will be used later in the initialization process of the
KT-MOGP for a new scenario.

3.4.1. Elite-preserving operation
The effectiveness of biased subtree transfer in GPHH has been

verified in [44], transferring elite individuals from a source problem
can help the algorithm to converge faster on related target problems.

In KT-MOGP, since the evolution stage are conducted among multi-
objective scenarios, the set of transferred individuals preserves the
non-dominated solutions of the final population. Note that there may
exist several duplicates in the set of non-dominated solutions. To en-
hance the diversity of transferred knowledge and to avoid repeatedly
computing the fitness of the same individuals, a duplicate removal
operation is involved as presented in Algorithm 2.

Given the final population of a completed KT-MOGP, the non-
dominated individuals with unique fitness values are first preserved.
Then for the remaining individuals, the phenotypic duplicates of them
are deleted by the following step. Given an individual 𝛺∗[𝑖], if there
exists no individual which has the same fitness value as it does, 𝛺∗[𝑖]
is directly put into the set of preserved individuals 𝛺′. Otherwise, a
rough method is first applied to compare the matrix representation
of 𝛺∗[𝑖] and 𝛺′[𝑗] (the individual in 𝛺′ with the same fitness value
as 𝛺∗[𝑖])). If they have the same matrix representation, discard 𝛺∗[𝑖].
The phenotypic distance of these two individuals should be measured
as shown in line 7 if they have a different matrix representation.
In this study, we adopt the method successfully utilized in [45–47].
Specifically, given a specific system state and a series of candidate
requests, use different individuals to calculate their priorities and sort
the requests to generate two sorting vectors. Determine whether two
individuals have the same phenotype by calculating the Euclidean
distance between the vectors.

By the use of matrix representation, the time cost for duplicate
removal can be greatly decreased. Different from the direct application
of phenotypic characterization in previous work [45,48], the MO-
DAEOSSP is a problem of complicated features and constraints, which
makes the phenotypic characterization more time-consuming. Instead,
by comparing the matrix representations of individuals, the output
heuristic rules can be roughly filtered first without the phenotypic
characterization, which can greatly save the whole computation cost.
Taking the output individuals of KT-MOGP in 150-request scenario
as an example, it takes 83.34 s to remove the duplicates based on
phenotypic characterization, while only 27.99 s are needed adopting
the method in Algorithm 2, saving the computation time by 66.41%.

3.4.2. Feature contribution extraction
By fixing a feature terminal to a constant, its contribution can be

figured out [49]. Thus, the feature contribution is calculated by the
following steps. First adopt the elite-preserving operator to the set 𝛺′

of individuals. Then replace the to be removed feature terminal 𝑥 with a
constant of one. The contribution of the specific feature can be obtained
by calculating the change of fitness value. The feature contribution of
𝑥 is the mean gap 𝐺𝑥 of all the individuals:

𝐺𝑥 = 1
|𝛺′

|

|𝛺′
|

∑

𝑖=1
|𝐹 (𝛺′[𝑖]) − 𝐹 (𝛺′[𝑖]|𝑥 = 1)| (10)

Note that only the feature terminals are extracted, for the contribution
of the operators is relatively abstract and hard to extract.

3.4.3. Guided initialization strategy
Based on the above two knowledge extraction methods, we design

a guided initial population generation strategy as shown in Algorithm
3.

The new population consists of three parts: the preserved elite in-
dividuals from completed source problem, individuals generated using
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Algorithm 2 Duplicate removal
Input: A set of non-dominated solutions 𝛺, their corresponding fitness

values 𝐹𝛺
utput: A set of non-dominated solutions without phenotypic dupli-

cates 𝛺′

1: 𝛺′
← 𝑈𝑛𝑖𝑞𝑢𝑒(𝛺,𝐹𝛺) // Select the individuals with unique fitness

values
2: 𝛺∗ = 𝛺 −𝛺′

3: for 𝑖 = 1 → |𝛺∗
| do

4: if 𝐹 (𝛺∗[𝑖]) = 𝐹 (𝛺′ [𝑗] ∈ 𝛺′ ) then
5: Get the matrix representation of 𝛺∗[𝑖] and 𝛺′ [𝑗] as 𝑀𝛺∗[𝑖],

𝑀𝛺′ [𝑗]
6: if 𝑀𝛺∗[𝑖] ≠ 𝑀𝛺′ [𝑗] then
7: 𝐷(𝑖, 𝑗) ← 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝛺∗[𝑖], 𝛺′ [𝑗])
8: if 𝐷(𝑖, 𝑗) ≠ 0 then
9: 𝛺′

← 𝛺′ ∪𝛺∗[𝑖]
10: end if
11: end if
12: else
13: 𝛺′

← 𝛺′ ∪𝛺∗[𝑖]
14: end if
15: end for

the feature contribution knowledge and randomly generated individu-
als. Noticeably, when generating individuals using the feature contri-
bution, a roulette wheel selection based on the feature contribution is
adopted to sample the feature terminal during the growth method of
individual.

Algorithm 3 Knowledge transfer-based initialization

Input: 𝛺′ , the preserved elite non-dominated HRs from completed
problem; 𝐺, the set of contribution for feature terminals; 𝑁 ,
population size

utput: 𝑃𝑜𝑝, the knowledge transfer-based initial population
1: if 𝛺′ < ⌊

𝑁
3 ⌋ then

2: 𝑃𝑜𝑝 ← 𝛺′

3: else
4: 𝑃𝑜𝑝 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡(𝛺′ , ⌊𝑁

3 ⌋) // Randomly select ⌊

𝑁
3 ⌋

individuals from 𝛺′

5: end if
6: for 𝑖 = 1 ← ⌊

𝑁
3 ⌋ do

7: 𝑃𝑜𝑝 ← 𝑃𝑜𝑝 ∪ 𝐺𝑢𝑖𝑑𝑒𝑑𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝐺) // Generate individuals using
the feature contribution knowledge

8: end for
9: for 𝑖 = 1 ← 𝑁 − |𝑃𝑜𝑝| do
0: 𝑃𝑜𝑝 ← 𝑃𝑜𝑝 ∪𝑅𝑎𝑛𝑑𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛() // Randomly generate remaining

individuals
1: end for

4. Computational experiment

In this section, the experiment design including instance genera-
tor, parameter settings and performance metrics is first introduced.
Then the computational results are presented and some analysis and
discussions are given.

4.1. Instance generation

In the training process of KT-MOGP, six scenarios whose candidate
observation requests range from 100 to 350, with an increment step
of 50, are constructed. For each scenario, 50 instances are generated
independently to form the training test. The average performance of
8

Table 1
Orbital parameters of the satellite: 𝑎, the length of semi-major axis; 𝑒, eccentricity; 𝑖,
inclination; 𝜔, argument of perigee; 𝛺, right ascension of the ascending node; and 𝑚
the mean anomaly.

Satellite 𝛼 𝑒 𝑖 𝜔 𝛺 𝑚

AS-01 7141701.7 0.000627 98.5964 95.5069 342.307 125.2658

5 randomly selected instances is used for each fitness evaluation in
KT-MOGP. To prevent overfitting, the instances for the simulation
stage of KT-MOGP are reselected in each iteration. To validate the test
performance, six test sets are generated, each of which contains 30
independent instances under the same scenario.

For the generation of each instance, we adopt the strategy used by
Liu et al. [11] and He et al. [10]. Each observation request is defined
by its geographical position (latitude, longitude, and altitude). Given
the number of total candidate requests, a uniform random distribution
is utilized to spread the targets uniformly in a given region. For each
request, the VTWs are generated based on the geographical position,
satellite capability and ephemerides which created through trajectory
prediction by the orbital parameters shown in Table 1. In this study, the
AS-01 satellite is used for our experiments. The maximum maneuvering
angles of the satellite in pitch, roll and yaw axes are 45◦, 45◦, and
90◦, respectively. Two kinds of regions are considered: (1) the Chinese
region (3◦N to 53◦N and 74◦E to 133◦E) and (2) worldwide region.
The scheduling horizon is from 2013/4/20 00:00:00 to 2013/4/20
24:00:00. Other factors for each request are as follows: identifier,
priority (in the range of [1,10]), duration (in the range of [15,30] in
seconds), arrival time, all the factors above have also been stated in
Section 2.2. The arrival time for each request is randomly sampled
between the start time of the scheduling horizon and the start time
of the last observation opportunity for this request. That is, before the
arrival time, this request and all the attributes are unknown for the
system.

Three test sets are adopted in this study:

• Set I: An instance set containing 30 test instances. The number of
observation requests ranges from 100 to 350, with an increment
step of 50. In each instance, requests are uniformly distributed
worldwide using the method proposed in [11]. All requests in this
tested set arrive dynamically.

• Set II: An instance set containing 30 test instances. In this set,
scenarios with more conflicting requests are tested. This test set
includes 30 instances with request numbers ranging from 100 to
350, where the requests of each scenario are uniformly distributed
in the area of 3◦N–53◦N and 74◦E–133◦E (the China area). All
requests in this test set arrive dynamically.

• Set III: All settings of Set III are the same as Set II, except that the
requests in this test set are static tasks.

The dataset, which contains various-size instances for training and
testing, is publicly available at https://github.com/wlnelysion.

4.2. Parameter settings

All experiments in this paper are conducted using an i7-9700K CPU,
64 GB of RAM, Windows 10 operating system, and MATLAB 2020b is
used for coding. Some of the comparison methods are programmed and
implemented through the Evolutionary Multi-objective Optimization
Platform (PlatEMO) [50].

Table 2 shows the feature terminals used in this study. Three types
of feature terminals are included: the features for request, the features
for VTW and the feature for system state. Among them, SL is the
remaining length of the VTW 𝑡𝑤𝑖𝑗 at system time 𝑡, and it is normalized
by dividing the length of the current orbit. WT is the gap from the start
time of VTW 𝑡𝑤𝑖𝑗 to current system time 𝑡. If 𝑡 has entered the range of
𝑡𝑤 , its WT is set to 10e−6. All feature terminals are normalized into
𝑖𝑗

https://github.com/wlnelysion
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Table 2
The feature terminal set in this study.

Terminal Description

P The profit of request 𝑟𝑖
DU The duration of request 𝑟𝑖
OTWN The number of VTWs for 𝑟𝑖
OTWL The overall length of VTWs for 𝑟𝑖
TIS Current system time 𝑡
REPT The remaining time of the current orbit 𝑜𝑙
APR The average profit of the currently scheduled requests
AQU The average image quality of the currently scheduled

requests
OTWS The start time of the VTW 𝑡𝑤𝑖𝑗
OTWA The attitude transition angle when inserting request 𝑟𝑖 at its

earliest execution opportunity
CONTWN The number of VTWs that conflict with the VTW 𝑡𝑤𝑖𝑗
CONTWL The overall length of VTWs that conflict with the VTW 𝑡𝑤𝑖𝑗
SL The slack degree of the VTW 𝑡𝑤𝑖𝑗
WT The waiting time of the VTW 𝑡𝑤𝑖𝑗
BQOT The time at which the best image quality can be obtained
WQOA The time at which the worst image quality can be obtained

Table 3
The Parameter settings used in KT-MOGP and MO-GPEA.
Parameter Value

Initialization Growth
Population size 200
Number for iterations 51
Maximum depth of the initial population 5
Maximum depth during evolution 10
Crossover probability 0.85
Mutation probability 0.15
Selection Tournament

selection
with size 2

the range [0,1] during the fitness evaluation procedure. The function
set is set to {+,−,×,÷,max,min, 𝑎𝑏𝑠}, which is widely used in other

PHH research. Note that the division ÷ is a protected division which
eturns 1 if divided by 0.

Table 3 shows the parameter settings of KT-MOGP.
To evaluate both the training and test performance, experiments

re designed to compare the proposed algorithm with other methods
s follows:

• To verify the effectiveness of the proposed heuristic template, KT-
MOGP is compared with GPEA [42], which is the only existing
GPHH-based algorithm for AEOSSP. Since GPEA is a method
targeting the single-objective AEOSSP, for a fair comparison, we
embedded the heuristic template of GPEA into the multi-objective
framework of KT-MOGP (denoted as MO-GPEA), then compared
their training and test performance under the same training and
test instances. Note that the setting of MO-GPEA is exactly the
same as that of KT-MOGP, except the heuristic template. Table 3
shows the parameter settings of KT-MOGP and MO-GPEA. Be-
sides, to demonstrate the superiority of KT-MOGP among static
scenarios, simulations are conducted to compare KT-MOGP with
MO-GPEA and several classical MOEAs on an independent test set
of MO-AEOSSP.

• Likewise, to further verify the effectiveness among single-
objective scenarios, we compare the proposed KT-MOGP with
GPEA on the same single-objective training and testing instances.
It is worth mentioning that to verify the performance of KT-
MOGP on a single-objective scenario, only the selection operator
in the algorithm needs to be modified. The KT-MOGP and GPEA
are then compared with 5 other classical heuristics rules on an
9

independent test set.
4.3. Experimental results

4.3.1. Multi-objective scenarios
As described in Section 4.1, for each training scenario we use 50 dif-

ferent instances for simulation. In the training process of KT-MOGP and
MO-GPEA, we ensure the fairness of the training process by using the
same random seed for the two algorithms so that they select the same
training instances during fitness evaluation. The 100-request scenario
is regarded as the initial source problem for the knowledge transfer
mechanism. That is, the initialization of 150-request scenario uses
the extracted knowledge from 100-request scenario, the 200-request
scenario uses the output knowledge of 150-request scenario, and so
on. The final non-dominated solutions of different training scenario are
depicted in Fig. 6, where 𝑓1 is the total profit and 𝑦− 𝑎𝑥𝑖𝑠 denotes the
verage image quality.

It is obvious that in all scenarios, KT-MOGP outperforms MO-GPEA
ccording to the obtained final Pareto fronts (PFs). From Fig. 6, we
an see that with the increase in the total observation profit, the aver-
ge imaging quality of scheduled requests correspondingly decreases,
hich is in line with our previous analysis of the two conflicting
ptimization objectives. It is also obvious from the figure that KT-
OGP can generally obtain solutions with higher average imaging

uality in each training scenario than MO-GPEA.
To test the effect of the HR sets generated through the evolution of

he proposed method, the test is first performed on Set I, which is a
eparate test set generated worldwide. The HR sets obtained in Fig. 6
re directly used rather than re-evolving HRs by KT-MOGP and MO-
PEA. The results are shown in Table 4, where HV, 𝑓1 and 𝑓2 denote

he hypervolume [51], best objective value of 𝑓1 (total obtained profit)
nd best objective value of 𝑓2 (average image quality), respectively. HV
s the main performance indicator used in this study for comparison and
nalysis of results of different methods, since it is a strictly monotonic
nary indicator [52–55] which can easily compare different PFs and
apture order relations between them [56]. In addition, for practical
roblem with complex constraints, HV is easy to apply and can reflect
he dominance and distribution properties of nonlinear PFs [56,57].

From the table, one can see that HRs evolved by both KT-MOGP
nd MO-GPEA (denoted as KTGPHRs and GPEAHRs) can achieve good
erformance in instances in Set I, but obviously KTGPHRs perform
etter than GPEAHRs in most instances. In terms of HV, which reflects
he overall performance of the algorithm, there is only one (350_1)
mong all 30 instances in Set I where the HV value of KTGPHR is
orse than that of GPEAHR. By comparing the objective values, similar

onclusions can be drawn. The 𝑓1 obtained by KTGPHRs is inferior
o GPEAHR in only one instance (250_3). Although GPEAHRs can get
etter 𝑓2 in some instances, the objective values are not significantly
etter than those of KTGPHRss, with worse performance in 𝑓1 and HV,
ndicating that the comprehensive performance of MO-GPEA is inferior.

To verify the performance of the HR sets in scenarios with more
onflicting requests and to measure the generalization of the algorithm
mong instances generated by different distributions, a set of instances
enerated in China (Set II) is tested. The results are shown in Table 5.
t can be seen that KTGPHRs still have a very obvious advantage
ver GPEAHRs in these scenarios. Only in very few instances is the
2 obtained by GPEAHRs slightly better than that of KTGPHRs, but
t the same time KTGPHRs still maintain better HV and 𝑓1 values.
ompared with Table 4, the completion rate of the proposed requests

s greatly reduced, and with the increase in the number of requests, the
ompletion rate (or total profit 𝑓1) decreases more significantly.

The multi-problem Wilcoxon rank-sum test [58] at a 5% signifi-
ance level is conducted to summarize the HV performance among the
nstances in Set I and Set II. According to the 𝑝-values presented in

Table 6, KT-MOGP is significantly better than MO-GPEA for addressing
the MO-DAEOSSP.

Although the proposed algorithm is designed for dynamic multi-

objective satellite scheduling problems, we are still curious about
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Fig. 6. Non-dominated solutions reserved in different scenarios of MO-DAEOSSP using KT-MOGP and MO-GPEA.
whether it can maintain its superiority in static scenarios. Therefore,
we compared KTGPHRs and MO-GEPArules with NSGA-II [43] and
MOEA/D [59] in Set III. NSGA-II and MOEA/D are classical multi-
objective evolutionary algorithms (MOEAs) which have already been
successfully applied to MO-AEOSSP, and the parameter settings and
problem-targeted operators used in [22] are adopted. For each instance,
we present the average values of 10 independent runs for NSGA-II and
MOEA/D. The results are shown in Table 7.

We find some interesting phenomena through the experimental re-
sults. First, among the four participating algorithms, NSGA-II performs
the best in most instances, followed by KTGPHRs and GPEAHRs, while
MOEA/D performs the worst in all 30 test instances. However, as
the number of requests to be selected in the scenario increases, the
advantage of NSGA-II is weakened accordingly. In instances with a
request size of 350 (350_1-5), we surprisingly find that the performance
of NSGA-II is no longer better than that of KTGPHRs, and even worse
than that of GPEAHRs in some instances. As the number of candidate re-
quests and conflicting requests increases, NSGA-II needs more iterations
10
and evaluations to enhance its performance while the performance
of KTGPHRs is rather stable. Besides, KTGPHRs and GPEAHRs can
obtain solutions with higher values of 𝑓2, which shows that they
are able to generate scheduling plans with higher average imaging
quality, and also indicates that they have a superior ability to preserve
extreme solutions in the 𝑓2 direction. In summary, although the overall
performance of the proposed method is inferior to NSGA-II on the
static MO-AEOSSP, it can provide better non-dominated solutions than
MOEA/D in a very short period without iteration, ensuring a high level
of imaging quality. Thus, KT-MOGP is still a quite competitive method
for static MO-AEOSSP.

Table 8 presents the results of the Wilcoxon rank-sum test conducted
between KTGPHR and other comparative methods on Set III. According
to the obtained 𝑝-values, there is a statistically significant difference
between KTGPHR and MOEA/D, but the performances of KTGPHR and
NSGA-II are quite similar, indicating that NSGA-II is not significantly
better than the proposed method. In addition, KTGPHR and GPEAHR
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Table 4
HV and objective values of the non-dominated solutions obtained by KTGPHR and GEPAHR on Set I. The ‘‘𝑓1 ’’ and ‘‘𝑓2 ’’ in this table are the best objective values for each instance
obtained by different methods. The best results in each instance are bolded.

Instance KTGPHR GPEAHR Instance KTGPHR GPEAHR

HV 𝑓1 𝑓2 HV 𝑓1 𝑓2 HV 𝑓1 𝑓2 HV 𝑓1 𝑓2
100_1 0.963 1.000 0.417 0.947 0.973 0.374 250_1 0.958 0.971 0.629 0.951 0.971 0.635
100_2 0.986 0.998 0.427 0.979 0.980 0.378 250_2 0.950 0.975 0.559 0.932 0.957 0.572
100_3 0.982 1.000 0.393 0.956 0.978 0.379 250_3 0.952 0.979 0.601 0.948 0.983 0.611
100_4 0.976 0.998 0.416 0.973 0.992 0.385 250_4 0.972 0.975 0.547 0.970 0.974 0.547
100_5 0.965 1.000 0.435 0.963 0.986 0.400 250_5 0.977 0.997 0.565 0.974 0.996 0.567

150_1 0.965 0.996 0.540 0.950 0.979 0.520 300_1 0.981 0.984 0.577 0.975 0.978 0.569
150_2 0.976 1.000 0.528 0.963 0.973 0.486 300_2 0.977 0.980 0.579 0.967 0.970 0.554
150_3 0.972 1.000 0.547 0.965 0.988 0.504 300_3 0.971 0.973 0.584 0.963 0.969 0.568
150_4 0.956 0.989 0.569 0.954 0.984 0.530 300_4 0.976 0.978 0.548 0.967 0.970 0.551
150_5 0.978 0.987 0.512 0.977 0.987 0.487 300_5 0.966 0.968 0.564 0.963 0.966 0.532

200_1 0.988 0.996 0.514 0.966 0.975 0.495 350_1 0.956 0.966 0.627 0.949 0.953 0.602
200_2 0.969 0.983 0.547 0.968 0.975 0.509 350_2 0.963 0.974 0.626 0.942 0.940 0.591
200_3 0.991 1.000 0.485 0.972 0.993 0.516 350_3 0.955 0.965 0.627 0.941 0.941 0.601
200_4 0.984 1.000 0.538 0.968 0.986 0.541 350_4 0.959 0.967 0.610 0.952 0.953 0.578
200_5 0.980 0.985 0.505 0.969 0.974 0.507 350_5 0.940 0.946 0.656 0.930 0.929 0.625
Table 5
HV and objective values of the non-dominated solutions obtained by KTGPHR and GEPAHR on Set II. The ‘‘𝑓1 ’’ and ‘‘𝑓2 ’’ in this table are the best objective values for each instance
obtained by different methods. The best results in each instance are bolded.

Instance KTGPHR GPEAHR Instance KTGPHR GPEAHR

HV 𝑓1 𝑓2 HV 𝑓1 𝑓2 HV 𝑓1 𝑓2 HV 𝑓1 𝑓2
100_1 0.730 0.703 0.560 0.691 0.667 0.600 250_1 0.462 0.409 0.712 0.412 0.356 0.642
100_2 0.675 0.651 0.583 0.653 0.625 0.555 250_2 0.467 0.415 0.714 0.430 0.379 0.663
100_3 0.739 0.716 0.582 0.721 0.699 0.608 250_3 0.476 0.424 0.718 0.428 0.376 0.708
100_4 0.659 0.629 0.617 0.578 0.540 0.575 250_4 0.461 0.410 0.735 0.439 0.388 0.702
100_5 0.682 0.654 0.567 0.679 0.648 0.560 250_5 0.489 0.439 0.722 0.402 0.349 0.721

150_1 0.573 0.536 0.673 0.526 0.493 0.645 300_1 0.431 0.375 0.778 0.389 0.330 0.745
150_2 0.596 0.563 0.723 0.536 0.504 0.677 300_2 0.462 0.410 0.761 0.412 0.356 0.730
150_3 0.621 0.587 0.739 0.537 0.507 0.687 300_3 0.432 0.376 0.756 0.359 0.297 0.727
150_4 0.551 0.510 0.677 0.516 0.480 0.587 300_4 0.449 0.395 0.743 0.388 0.328 0.708
150_5 0.609 0.577 0.704 0.570 0.541 0.647 300_5 0.452 0.399 0.748 0.371 0.310 0.728

200_1 0.501 0.453 0.739 0.446 0.398 0.724 350_1 0.398 0.343 0.806 0.366 0.309 0.773
200_2 0.527 0.485 0.723 0.457 0.405 0.718 350_2 0.402 0.345 0.774 0.377 0.319 0.768
200_3 0.527 0.481 0.713 0.490 0.445 0.711 350_3 0.416 0.362 0.778 0.379 0.321 0.762
200_4 0.485 0.436 0.735 0.433 0.380 0.731 350_4 0.413 0.359 0.775 0.393 0.338 0.758
200_5 0.490 0.441 0.747 0.452 0.404 0.694 350_5 0.413 0.356 0.783 0.384 0.328 0.771
Table 6
𝑝-values obtained by Wilcoxon rank-sum test for KTGPHR and
GPEAHR on Set I and Set II.
Test Set Set I Set II

KTGPHR v.s. GPEAHR 7.566E−03 2.461E−02

perform relatively similarly in Set III. This is mainly because the
idle monitoring mode of KT-MOGP is not working since there are no
dynamically arrived requests in instances of Set III. The above results
further demonstrate that KT-MOGP is a useful method for solving static
MO-AEOSSP.

Normalization can map the range of different features to similar
scales, which helps to avoid the excessive influence of certain features
and keep balance among features. Besides, feature normalization can
balance the scale of search space which benefits the convergence of the
proposed method. To reveal the effectiveness of feature normalization,
the HRs output by KT-MOGP with and without normalized feature
terminals are compared (denoted as the normalization experiment).
The normalization experiments are conducted on Set II. The output re-
sults are further statistically tested through the multi-problem Wilcoxon
rank-sum test at the 5% significance level, as shown in Table 9. It is
clear from the table that there exists a statistical difference between
HRs generated with and without normalized feature terminals in terms
of HV, 𝑓1 and 𝑓2, indicating that the feature normalization can ob-
iously help improve the performance of the proposed GP method.
11

ince the normalization may incur some time cost, we calculate the
time consumption of outputting scheduling solutions with and without
feature normalization. The results show that normalization increases
the average cost of feature calculation by 17.6%, but the time of a single
decision step still remains at the millisecond level. In other words,
the scheduling processes adopting the above two feature calculating
methods can be both regarded as instantaneous.

4.3.2. Single-objective scenarios
In the previous analysis, we compared the performance of the

proposed algorithm with existing research in various multi-objective
scenarios. In this subsection, we verify whether the proposed algorithm
can continue to maintain its superiority in single-objective DAEOSSP
scenarios through a series of comparative experiments. We choose to
maximize the total profit (𝑓1) as the optimization objective, then evolve
the modified KT-MOGP to obtain a set of HRs (denoted as GPHRs).
The obtained GPHRs are compared with the HRs evolved by modified
MO-GPEA (denoted as EAHRs) and several existing classical heuristic
rules on Set I and Set II. Specifically, the algorithms used to evolve HRs
in single-objective scenarios adopt the same experimental parameters
and settings as mentioned above, the only difference is the selection
operation. In this section, the GPHH-based algorithms only refer to
the objective value (𝑓1 value) when selecting individuals, that is, the
non-dominated sorting method is no longer adopted.

Tables 10 and 11 state the comparative results of the 6 heuristic
rules on Set I and Set II respectively. Except for the GPHR and EAHR
mentioned before, other comparison methods are introduced below.
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Table 7
HV and objective values of the non-dominated solutions obtained by KTGPHR and GEPAHR on Set II. The ‘‘𝑓1 ’’ and ‘‘𝑓2 ’’ in this table are the best objective values for each instance
obtained by different methods. The best results in each instance are bolded.

Instance KTGPHR GPEAHR MOEA/D NSGA-II

HV 𝑓1 𝑓2 HV 𝑓1 𝑓2 HV 𝑓1 𝑓2 HV 𝑓1 𝑓2
100_1 0.872 0.863 0.666 0.885 0.880 0.600 0.855 0.869 0.455 0.937 0.939 0.567
100_2 0.899 0.892 0.692 0.911 0.910 0.622 0.883 0.923 0.476 0.960 0.966 0.597
100_3 0.939 0.939 0.685 0.943 0.942 0.607 0.893 0.892 0.467 0.951 0.955 0.573
100_4 0.937 0.932 0.643 0.954 0.958 0.624 0.896 0.914 0.485 0.968 0.976 0.581
100_5 0.943 0.945 0.696 0.916 0.907 0.622 0.902 0.917 0.454 0.963 0.979 0.619

150_1 0.775 0.769 0.718 0.656 0.654 0.729 0.735 0.732 0.474 0.811 0.816 0.553
150_2 0.794 0.797 0.732 0.723 0.730 0.764 0.761 0.779 0.482 0.848 0.835 0.548
150_3 0.806 0.796 0.721 0.751 0.764 0.751 0.752 0.744 0.454 0.824 0.809 0.543
150_4 0.756 0.753 0.736 0.699 0.694 0.726 0.744 0.738 0.474 0.809 0.791 0.549
150_5 0.762 0.753 0.701 0.747 0.748 0.712 0.715 0.701 0.455 0.793 0.786 0.579

200_1 0.689 0.671 0.713 0.632 0.604 0.728 0.626 0.610 0.488 0.696 0.667 0.585
200_2 0.695 0.671 0.754 0.681 0.659 0.719 0.618 0.603 0.508 0.688 0.666 0.599
200_3 0.671 0.651 0.727 0.618 0.585 0.715 0.628 0.616 0.487 0.679 0.650 0.559
200_4 0.694 0.678 0.745 0.644 0.618 0.712 0.640 0.623 0.464 0.732 0.723 0.574
200_5 0.696 0.673 0.673 0.666 0.646 0.702 0.643 0.634 0.452 0.744 0.735 0.565

250_1 0.615 0.592 0.763 0.598 0.571 0.730 0.563 0.539 0.463 0.642 0.618 0.568
250_2 0.613 0.578 0.751 0.621 0.602 0.778 0.583 0.546 0.511 0.659 0.638 0.604
250_3 0.602 0.571 0.785 0.603 0.583 0.814 0.575 0.548 0.477 0.663 0.645 0.597
250_4 0.607 0.573 0.760 0.618 0.599 0.760 0.575 0.550 0.470 0.661 0.642 0.568
250_5 0.606 0.573 0.769 0.606 0.582 0.748 0.569 0.547 0.473 0.665 0.648 0.570

300_1 0.580 0.539 0.725 0.555 0.515 0.743 0.527 0.497 0.473 0.605 0.577 0.581
300_2 0.576 0.535 0.761 0.580 0.542 0.714 0.538 0.513 0.493 0.595 0.569 0.567
300_3 0.584 0.544 0.759 0.564 0.522 0.722 0.516 0.482 0.465 0.610 0.588 0.570
300_4 0.574 0.537 0.736 0.562 0.521 0.713 0.540 0.509 0.480 0.606 0.573 0.557
300_5 0.581 0.542 0.747 0.549 0.509 0.721 0.512 0.498 0.500 0.587 0.551 0.570

350_1 0.578 0.548 0.788 0.516 0.474 0.782 0.473 0.435 0.501 0.541 0.506 0.566
350_2 0.583 0.556 0.808 0.531 0.498 0.819 0.468 0.418 0.499 0.550 0.519 0.597
350_3 0.598 0.573 0.773 0.530 0.490 0.734 0.475 0.433 0.486 0.549 0.519 0.591
350_4 0.591 0.564 0.780 0.541 0.506 0.772 0.477 0.435 0.472 0.534 0.492 0.593
350_5 0.580 0.548 0.776 0.532 0.496 0.788 0.468 0.419 0.467 0.541 0.503 0.586
Table 8
𝑝-values obtained by Wilcoxon rank-sum test for KTGPHR and
comparative methods on Set III.
Method NSGA-II MOEA/D GPEAHR

KTGPHR v.s. 0.5642 4.593E−02 0.2804

Table 9
𝑝-values obtained by Wilcoxon rank-sum test for normalization
experiment.

HV 𝑓1 𝑓2
𝑝-value 3.137E−03 1.899E−03 3.022E−15

• PF [60]: Sort the candidate requests in descending order of profit,
then attempt to insert them in order.

• RF [60]: Randomly sort the candidate requests, then attempt to
insert them in order. We take the average results of 10 indepen-
dent runs for each instance.

• PWF [61]: Sort the candidate requests in descending order of
profit. For the requests have the same profit, they are sorted from
early to late by their start time of VTW in the current orbit.

• The FIFO rule proposed by Bianchessi and Righini [62].

From the given two tables, we can see that the performance of GPHR
an outperform all comparison methods, followed by EAHR and FIFO,
hile PWF, PF and RF perform worst. By analyzing the experimental

esults, it can be easily figured out that the start time of the OTW
OTWS) is an important feature for single-objective DAEOSSP, which
s why methods considering OTWS (GPHR, EAHR, and FIFO) perform
etter than others. To provide a more intuitive view of the performance
ifference, we perform the Wilcoxon rank-sum test on the obtained
esults, as shown in Table 12. According to the obtained 𝑝-value,

there are statistically significant differences between GPHR and other
12
manually designed heuristics. For EAHR, GPHR performs significantly
better than it on Set I, but among Set II they perform quite similarly,
indicating that EAHR is also competitive for dealing with conflicting
requests.

4.4. Effectiveness of knowledge transfer-based initialization

To validate the effectiveness of the proposed knowledge transfer-
based initialization, we pick two representative scenario scales, 150-
request scenario and 350-request scenario, and test the training and
testing performance of the algorithm with and without knowledge
transfer based-initialization. The algorithm without knowledge transfer-
based initialization is denoted as NKT-MOGP, other setups remain the
same as that of KT-MOGP.

The final non-dominated solutions of different training scenarios are
depicted in Fig. 7. Obviously, the non-dominated solutions obtained by
KT-MOGP can dominate most of the non-dominated individuals gener-
ated by NKT-MOGP, which indicates that the knowledge transfer-based
initialization has a significant effect on improving the convergence of
the algorithm. In addition, the PFs obtained by KT-MOGP also have
a better distribution in the solution space than those obtained by
NKT-MOGP, which reveals the better quality of spreading and diversity.

Table 13 states the HV values of HR sets generated by KT-MOGP
and NKT-MOGP (denoted as KTHRs and NKTHRs) among the extended
Set of Set I (denoted as Eset), which generate ten different instances
for each scenario size using the same instance generating method as
Set I adopts. As KTHRs always get better HVs which imply better
overall performance, the results illustrate that KTHRs generally outper-
form NKTHRs, further demonstrating the effectiveness of the proposed
knowledge transfer-based initialization. Besides, we can also figure
out that although knowledge transfer-based initialization method can
further improve the quality of the obtained HRs, the degree of im-
provement is not very significant in some instances. Combined with the
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Table 10
The 𝑓1 values obtained by GPHRs and other comparative methods on Set I. The best result for each instance are bolded.

Instance PF RF PWF FIFO EAHR GPHR Instance PF RF PWF FIFO EAHR GPHR

100_1 0.578 0.426 0.627 0.955 0.976 1.000 250_1 0.316 0.252 0.439 0.962 0.970 0.974
100_2 0.477 0.409 0.556 0.985 0.977 0.998 250_2 0.352 0.250 0.389 0.967 0.975 0.977
100_3 0.540 0.436 0.584 0.978 0.978 0.996 250_3 0.296 0.235 0.353 0.967 0.976 0.989
100_4 0.488 0.476 0.563 0.986 0.986 1.000 250_4 0.423 0.234 0.414 0.990 0.984 0.991
100_5 0.484 0.429 0.540 0.991 0.980 0.995 250_5 0.417 0.248 0.362 0.954 0.957 0.970

150_1 0.467 0.344 0.541 0.990 0.999 1.000 300_1 0.257 0.207 0.354 0.950 0.976 0.983
150_2 0.357 0.332 0.462 0.984 0.987 0.989 300_2 0.302 0.203 0.400 0.977 0.987 0.995
150_3 0.406 0.307 0.456 0.967 0.976 0.988 300_3 0.251 0.221 0.303 0.949 0.962 0.964
150_4 0.478 0.366 0.506 0.994 0.994 1.000 300_4 0.317 0.210 0.375 0.965 0.975 0.978
150_5 0.424 0.342 0.524 0.981 0.981 0.981 300_5 0.271 0.215 0.368 0.967 0.974 0.975

200_1 0.358 0.287 0.426 0.977 0.992 1.000 350_1 0.225 0.178 0.348 0.916 0.936 0.936
200_2 0.352 0.281 0.434 0.996 1.000 1.000 350_2 0.266 0.188 0.411 0.924 0.942 0.950
200_3 0.406 0.295 0.450 0.986 0.991 0.991 350_3 0.252 0.170 0.324 0.940 0.954 0.961
200_4 0.423 0.280 0.460 0.992 0.991 1.000 350_4 0.272 0.187 0.341 0.967 0.973 0.974
200_5 0.417 0.299 0.499 0.977 0.965 0.991 350_5 0.228 0.211 0.310 0.943 0.961 0.967
Table 11
The 𝑓1 values obtained by GPHRs and other comparative methods on Set II. The best result for each instance are bolded.

Instance PF RF PWF FIFO EAHR GPHR Instance PF RF PWF FIFO EAHR GPHR

100_1 0.431 0.320 0.506 0.676 0.773 0.781 250_1 0.234 0.164 0.298 0.358 0.449 0.485
100_2 0.433 0.304 0.474 0.596 0.713 0.754 250_2 0.240 0.195 0.319 0.364 0.504 0.525
100_3 0.471 0.308 0.561 0.735 0.809 0.816 250_3 0.312 0.177 0.366 0.372 0.467 0.519
100_4 0.419 0.331 0.509 0.733 0.820 0.826 250_4 0.294 0.176 0.354 0.382 0.482 0.521
100_5 0.501 0.267 0.563 0.676 0.757 0.763 250_5 0.216 0.180 0.337 0.381 0.496 0.510

150_1 0.307 0.235 0.376 0.456 0.596 0.600 300_1 0.231 0.149 0.231 0.317 0.440 0.461
150_2 0.327 0.253 0.451 0.558 0.648 0.674 300_2 0.195 0.155 0.195 0.321 0.421 0.430
150_3 0.354 0.262 0.434 0.491 0.603 0.651 300_3 0.260 0.139 0.260 0.324 0.426 0.450
150_4 0.356 0.236 0.398 0.558 0.627 0.713 300_4 0.236 0.152 0.236 0.313 0.454 0.472
150_5 0.312 0.211 0.357 0.540 0.638 0.663 300_5 0.190 0.160 0.190 0.309 0.430 0.460

200_1 0.443 0.225 0.343 0.443 0.578 0.621 350_1 0.197 0.127 0.273 0.304 0.395 0.411
200_2 0.420 0.203 0.395 0.420 0.518 0.544 350_2 0.184 0.130 0.263 0.298 0.383 0.385
200_3 0.423 0.199 0.370 0.423 0.536 0.548 350_3 0.216 0.133 0.277 0.293 0.391 0.404
200_4 0.404 0.189 0.379 0.404 0.546 0.575 350_4 0.214 0.135 0.340 0.283 0.368 0.370
200_5 0.426 0.188 0.356 0.426 0.502 0.570 350_5 0.183 0.128 0.304 0.282 0.377 0.382
Fig. 7. Non-dominated solutions reserved in different scenarios of MO-DAEOSSP using KT-MOGP and NKT-MOGP.
Table 12
𝑝-values obtained by Wilcoxon rank-sum test for GPHR and comparative methods on
Set I and Set II.

GPHR v.s. PF RF PWF FIFO EAHR

Set I 2.895E−11 2.902E−11 2.902E−11 3.058E−3 3.058E−2
Set II 9.660E−09 3.020E−11 8.697E−08 4.46E−4 0.412

training performance, the reason is obvious. The knowledge transfer-
based initialization can help accelerate convergence in the early stage
of KT-MOGP, whereas NKT-MOGP can also obtain relatively compet-
itive HRs due to its superior operators and heuristic-based simulation
stage as the number of iterations increases.
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To further illustrate the above statement, and to figure out the ex-
tent of improvement brought by the transfer mechanism, the additional
experiments are conducted as follows: A set of HRs outputted by KT-
MOGP based on Set II are obtained first. Note that HRs are generated
taking the 100-request scenario as the source domain for extraction,
thus for all training scenarios the transfer knowledge is extracted based
on 100-request output solutions. The newly obtained HRs (denoted as
KTHR_100) are then compared with KTHR and NKTHR on Set II.

Table 14 shows the HV values generated by KTHR, NKTHR and
KTHR_100 on Set II. It is obvious that KTHR still performs best in most
of the instances, indicating the effectiveness of the proposed transfer
mechanism. However, when comparing the results of the remaining
two methods, we find that in most instances KTHR_100 performs even
worse than NKTHR. The aforementioned phenomenon indicates that a
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Table 13
The HV values obtained by KTHRs and NKTHRs on Eset. The best result for each
instance are bolded.

Instance KTHR NKTHR Instance KTHR NKTHR

150_1 0.965 0.949 350_1 0.938 0.935
150_2 0.978 0.973 350_2 0.957 0.951
150_3 0.983 0.979 350_3 0.963 0.955
150_4 0.976 0.974 350_4 0.940 0.928
150_5 0.972 0.956 350_5 0.949 0.945
150_6 0.952 0.950 350_6 0.960 0.951
150_7 0.972 0.965 350_7 0.945 0.930
150_8 0.989 0.982 350_8 0.952 0.952
150_9 0.966 0.957 350_9 0.955 0.958
150_10 0.962 0.947 350_10 0.959 0.949

Table 14
The HV values obtained by KTHRs, NKTHRs and KTHR_100s on Set II.
The best result for each instance are bolded.
Instance KTHR NKTHR KTHR_100

150_1 0.506 0.462 0.506
150_2 0.536 0.534 0.536
150_3 0.554 0.532 0.554
150_4 0.522 0.498 0.522
150_5 0.552 0.538 0.552
200_1 0.587 0.498 0.490
200_2 0.587 0.498 0.490
200_3 0.558 0.528 0.488
200_4 0.577 0.496 0.469
200_5 0.582 0.474 0.478
250_1 0.437 0.438 0.425
250_2 0.413 0.405 0.422
250_3 0.515 0.468 0.445
250_4 0.449 0.455 0.413
250_5 0.430 0.424 0.411
300_1 0.454 0.382 0.380
300_2 0.466 0.374 0.391
300_3 0.434 0.377 0.367
300_4 0.474 0.385 0.409
300_5 0.473 0.395 0.406
350_1 0.426 0.382 0.330
350_2 0.426 0.382 0.330
350_3 0.439 0.377 0.336
350_4 0.426 0.385 0.351
350_5 0.447 0.395 0.387

Table 15
𝑝-values obtained by Wilcoxon rank-sum test for KTHR, NKTHR and
KTHR_100 on Set II.

KTHR NKTHR KTHR_100

KTHR / 1.197E−02 5.685E−03
KTHR_100 1.197E−02 9.925E−01

reasonable transfer and extraction of suitable knowledge can help im-
prove the performance of output HRs, while unreasonable knowledge
extraction and utilization may even lead to negative transfer which
causes performance degradation. To provide an intuitive view of the
performance difference, the Wilcoxon rank-sum test is conducted and
shown in Table 15. According to the 𝑝-value, there exist statistically sig-
nificant differences between KTHR and other methods, but KTHR_100
is not significantly better than NKTHR, further verifying our analysis.

4.5. Efficiency of the proposed method

In this section, the efficiency of the proposed method in this work
is analyzed from two aspects, the training procedure and the testing
procedure.

The efficiency of the training procedure relies on two main compo-
nents: the heuristic template and the knowledge transfer. To verify the
effectiveness of the heuristic template, we first exclude the knowledge
transfer initialization and generate the HRs. The average runtimes for
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Fig. 8. The computing time (s) for one iteration on instance of 100–350 requests using
KT-MOGP.

Table 16
The average number of nodes in HRs obtained by instances of various sizes.

Instance size 100 150 200 250 300 350

Tree Size 56.06 61.24 67.29 56.06 77.34 69.02

one iteration under various-size instances are shown in Fig. 8. It is
obvious from the figure that the computing cost of KT-MOGP has an
apparent tendency related to the scale of the instance. Most of the
runtime is spent on the evaluation of HRs. Although the scheduling
at each decision step is real-time, the evaluation of an HR needs to
output the corresponding solution and fitness values of a given instance,
thus the entire simulation process needs to be completed. We also
calculate the time cost of HR generation, and the average time spent
generating an HR is 0.124 ms. Regarding knowledge transfer, it has
been mentioned before that the design of matrix representation and
rough removal of individuals can help improve the efficiency a lot.
The average time of rough removal is 0.0245 s while the average time
cost of removal based on phenotypic characterization is 1.33 s. For
feature contribution extraction, calculating one feature contribution
cost average 0.5 s based on one individual.

The efficiency of the testing procedure is mainly related to the aver-
age time spent by each decision when scheduling requests. According
to the experimental results, the proposed method makes each decision
in 0.025 ms, indicating the decision-making in scheduling process is
almost instantaneous.

4.6. Analysis of evolved rules

In this section, the evolved HRs are analyzed from several different
aspects to help better understand the proposed method.

Table 16 shows the average number of nodes in the output HRs
generated by instances of various sizes. Note that the node contains
both the feature terminal and the operator. We find from the table
that the size of HRs does not show a clear linear correlation with the
scenario size, and there is no excessive expansion of tree structure,
which indicates the effectiveness of the individual generation and
evolution operations.

We select the 150-request scenario and sort the obtained HRs by 𝑓1
and 𝑓2, respectively. The individuals who perform best in 𝑓1 and 𝑓2 are
selected and shown in Table 17. Among the output individuals, HR1
can get scheduling solution with the best 𝑓1 value. By analyzing the
features in HR1, it can be found that CONTWL and P are frequently
used and play important roles, revealing that HR1 tends to schedule
requests with higher priority and less conflict. OTWS, SL and WT are
also important terminals in HR1. Thus HR1 is more likely to schedule
requests early in the timeline. HR2 focuses more on 𝑓 and makes a
2



Swarm and Evolutionary Computation 85 (2024) 101460L. Wei et al.
Table 17
Examples of evolved individuals.
HR1 ∶ 1

SL×OTWN
× (P × (1 + COTWL) + COTWL + OTWS− WT

(COTWL−OTWL)×BQOT×SL
)

HR2 ∶ 1
OTWN

÷ (OTWS × SL × (BQOT + REPT) × max(APR + SL,BQOT) × BQOT × max(OTWS,WQOA))
Fig. 9. The contribution of each feature terminal in the HRs obtained by 150-request
scenario.

trade-off between scheduling profit and observation quality, which is
verified by its structure. BQOT is the most frequently used terminal in
HR2, indicating that HR2 tends to consider the obtained image quality
more. APR and WQOA, two terminals about image quality, are adopted
in HR2. Besides, SL, OTWS and OTWN are also important in HR2,
demonstrating that HR2 is still likely to schedule requests early in the
timeline because of the dynamic characteristics of MO-DAEOSSP.

As mentioned in Section 3.4, feature contribution is another impor-
tant factor for knowledge transfer since it decides the probability of
each node when generating new individuals. Fig. 9 shows the overall
contribution of each feature terminal in the obtained set of 150-request
HRs. SL and WT are features which contribute most (29% and 14%)
and are more likely to be chosen when generating new individuals by
knowledge-transfer based initialization method. The contributions of
P and CONTWL are both 7%, while the remaining feature terminals
are basically at the same level (3% to 4%). The above phenomenon
indicates that even if HRs have different preferences when scheduling
requests, request timeliness is always an important component which
influences the output solutions.

5. Conclusion and future work

A multi-objective agile earth observation satellite scheduling prob-
lem considering dynamic arrival observation requests (MO-DAEOSSP)
is studied in this paper, where the total profit and the average image
quality of scheduled requests are optimized simultaneously. Manually
designed heuristics used for previous research highly rely on expert
knowledge while iterative based methods can get high-quality solutions
but are always quite time-consuming and unacceptable for real-time
scheduling. Inspired by the successful application of genetic program-
ming based hyper-heuristics in manufacturing and producing domain,
we propose a knowledge-transfer based multi-objective genetic pro-
gramming algorithm (KT-MOGP) in this work. A heuristic-based sim-
ulation equipped with idle monitoring and request execution modules
is first designed to form the simulation procedure for KT-MOGP, evalu-
ating the fitness of heuristic rules (HRs). Then a multi-objective genetic
programming hyper heuristic (GPHH) framework is proposed to evolve
the HRs. KT-MOGP applies knowledge-transfer methods to enhance the
efficiency and accelerate convergence, utilizing elite individuals and
knowledge extracted from non-dominated solutions.

We conduct extensive experiments on the proposed algorithm in
multi-objective and single-objective scenarios, including comparisons
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with existing GPHH-based methods, comparisons with other multi-
objective evolutionary algorithms (MOEAs) in static scenarios, and
comparisons with other construction heuristics in single-objective
DAEOSSP scenarios. Experimental results state that KT-MOGP is able
to evolve HRs with competitive performance for both multi-objective
scenarios and single-objective scenarios, and the evolved HRs are
competitive for both static and dynamic scenarios. Besides, experiments
also verify the effectiveness of the proposed knowledge transfer-based
initialization.

How to generate or select representative instances for the training
of the GPHH based algorithm is a problem worth researching, since
it can greatly improve the efficiency for the evolution stage of the
algorithm. Besides, we will consider the address for more complex
MO-DAEOSSP, especially for the multi-satellite problem in the future.
Different from the single satellite scenarios, several satellites should
first adopt a collaborative planning strategy to allocate requests for
each satellite. The proposed method should be modified to adapt to
the multi-satellite scenario. By combining the collaborative planning
strategy and the GPHH based method, a framework that can address
large-scale satellite scheduling problem can be proposed. Furthermore,
hierarchy mechanisms for multi-satellite optimization, such as adaptive
strategies and parameter tuning can be another focus of this study.
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