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A B S T R A C T   

In recent years, omni-channel retailing has become immensely popular among both retailers and consumers. In 
this approach, retailers often leverage their brick-and-mortar stores to fulfill online orders, leading to the need 
for simultaneous decision-making on replenishment and inventory rationing. This inventory strategy presents 
significant complexities in traditional dynamic pricing and inventory management problems, particularly in 
unpredictable market environments. Therefore, we have developed a dynamic pricing, replenishment, and ra-
tioning model for omni-channel retailers using a two-level partially observed Markov decision process to visu-
alize the dynamic process. We propose to use a deep reinforcement learning algorithm, called Maskable LSTM- 
Proximal Policy Optimization (ML-PPO), which integrates the current observations and future predictions as 
input to the agent and uses the invalid action mask to guarantee the allowable actions. Our simulation experi-
ments have demonstrated the ML-PPO’s efficiency in maximizing retailer profit and service level, along with its 
generalized ability to tackle dynamic pricing and inventory management problems.   

1. Introduction 

Since the beginning of the COVID-19 epidemic, the consumption 
scenario of retail has accelerated to online channels. Consumers who 
find it difficult to go out have chosen to consume through online sce-
narios such as delivery-to-home business and live shopping. To meet 
consumer demand, the traditional retail industry continues to transform 
into new retail, from traditional single-channel retailing to multi- 
channel retailing, until omni-channel retailing. Based on a report by 
Statista on omni-channel retailing in the United States, it was found that 
as of 2022, more than 80 % of retailers have transitioned to omni- 
channel retailing. The adoption of omni-channel retailing presents 
both opportunities and challenges for retailers. On the one hand, it al-
lows them to optimize performance by effectively coordinating opera-
tions across different channels (Cao & Li, 2015). On the other hand, it 
presents significant challenges for retailers in decision-making. 

Faced with the omni-channel retailing pattern, retailers must 
reconsider their inventory strategies (Jalilipour Alishah, Moinzadeh, & 

Zhou, 2015). To ensure efficient and timely distribution, stores often 
resort to store-warehouse integration methods, such as the ship-from- 
store strategy (Mou, Robb, & DeHoratius, 2018). However, this in-
ventory strategy can result in conflicts when online and offline con-
sumers attempt to purchase the same item concurrently. To solve this 
problem, retailers choose to store a certain amount of inventory to fulfill 
the online demand. For instance, a supermarket chain in China fulfills 
online orders using the inventory in its physical store, employing a 
proportional distribution scheme for online and offline inventory to 
reserve a portion of online inventory. As a result, the physical store is not 
authorized to sell locked online products. To fulfill the consumer de-
mand in both online and offline sales channels, retailers must make 
timely inventory rationing decisions. Additionally, dynamic pricing 
plays a crucial role in enabling retailers to balance demand and in-
ventory. Appropriate coordination between pricing and inventory de-
cisions can reduce the risk of inventory and demand mismatch (Feng, 
Luo, & Shanthikumar, 2020) and enable companies to maximize profits 
(Lei, Jasin, & Sinha, 2018). 
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With the continuous development of omni-channel retailing, there 
has been an increase in research focused on pricing and inventory 
management, such as Goedhart, Haijema, & Akkerman (2022a) and Qiu, 
Ma, & Sun (2023). However, to the best of our knowledge, there is still a 
research gap in addressing dynamic decision-making encompassing 
joint pricing, ordering, and inventory rationing under uncertain demand 
in the context of omnichannel retailing. Hence, motivated by the exist-
ing gap in the literature and the practical necessity, this study aims to 
investigate the dynamic pricing, replenishment, and rationing (DPRR) 
problem of an omnichannel retailer, particularly with imperfect infor-
mation concerning future demand and consumer distribution across 
channels. 

In terms of methodology, current studies in dynamic pricing and 
inventory control primarily rely on the Markov decision problem (MDP) 
to obtain numerical solutions (e.g., Goedhart, Haijema, & Akkerman, 
2022b; Zhou, Yang, & Fu, 2022). Since solving MDP is time-consuming 
because of the curse of dimensionality, several algorithms are proposed 
to obtain a faster solution. However, in the real world, retailers cannot 
get an accurate demand state due to the uncertainty in the demand 
environment (Aviv & Pazgal, 2005). Thus, we formulate a finite horizon 
partially observed Markov decision problem (POMDP) on the DPRR 
problem of an omni-channel retailer in an uncertain demand market. 
Considering that the unobservable state further increases the difficulty 
of solving, we propose to use a deep reinforcement learning algorithm to 
solve the DPRR problem. 

The main contributions of this paper are summarized as follows:  

i. We constructed a model of the dynamic pricing, replenishment, 
and rationing problem (DPRR) for an omni-channel retailer to 
maximize the retailer’s profit in an uncertain demand market.  

ii. We proposed to use a Maskable Long-Short-Term-Memory 
(LSTM)-Proximal Policy Optimization (ML-PPO) algorithm that 
concatenates the observation state and the predictions of the 
future state from LSTM as input into the PPO agent and uses the 
invalid action mask to constraint the action space.  

iii. We conducted experiments to evaluate the performance of the 
ML-PPO algorithm and demonstrated that it is highly effective 
and robust in various environment settings, leading to improved 
total profits and service levels for omni-channel retailers. 

The rest of this paper is structured as follows. Section 2 reviews the 
related work. Section 3 sets up a model of the DPRR problem. Section 4 
proposes an improved deep reinforcement learning algorithm. Section 5 
introduces the simulation experiments to evaluate the performance of 
the designed algorithm. Section 6 concludes the paper and future 
research orientations. 

2. Related work 

In this section, we reviewed the prior literature about the joint 
pricing and inventory management problem and the application of deep 
reinforcement learning in supply chain management. 

2.1. Joint pricing and inventory management 

Joint pricing and inventory management are essential issues in 
supply chain management (Elmaghraby & Keskinocak, 2003; Simchi- 
Levi & Agrawal, 2004). The early studies mainly concentrated on 
single-channel supply chains with deterministic demands (Chen & Hu, 
2012). As the research progressed, the problem’s scenario gradually 
broadened. Scholars have proposed dependent demand functions to 
portray demand, such as the price-dependent demand function (Fang, 
Nguyen, & Currie, 2021; Sepehri, Mishra, Tseng, & Sarkar, 2021) and 
inventory-dependent demand function (Bardhan, Pal, & Giri, 2019; 
Cárdenas-Barrón, Shaikh, Tiwari, & Treviño-Garza, 2020). A part of 
scholars assume that the parameters are known and constant, a situation 

usually referred to as full-information demand (He, Huang, & Li, 2020; 
Wang, Gan, Li, & Yan, 2021), while other parts of scholars, in 
conjunction with actual sales scenarios, argue that demand information 
is not completely known and demand learning is required through 
parameter estimation and data-driven approaches. Chen, Chao, & Wang 
(2020) designed a data-driven algorithm and performed parameter 
estimation using great likelihood estimation. Keskin, Li, & Song (2022) 
argued that retailers do not have all the information about demand and 
used a data-driven approach to parameter estimation of the demand 
function. Neghab, Khayyati, & Karaesmen (2022) considered a single- 
period inventory problem with random demand with both directly 
observable and unobservable features. 

Furthermore, joint pricing and inventory management in multi- 
channel supply chains have attracted more attention with the develop-
ment of supply chains. Batarfi, Jaber, & Glock (2019) investigated a 
dual-channel supply chain’s pricing and inventory decisions. He et al. 
(2020) studied a single-retailer-single-vendor dual-channel supply chain 
model and the pricing and inventory decisions simultaneously. Gupta, 
Ting, & Tiwari (2019) considered a retailer with many offline stores but 
then added an online channel and developed a decision support model to 
optimize pricing and inventory control. Liu & Xu (2020) studied joint 
decisions on pricing and ordering for omnichannel BOPS retailers. Qiu 
et al. (2023) considered a joint pricing and ordering optimization 
problem of an omnichannel retailer and proposed a data-driven robust 
optimization approach to handle the demand uncertainty. 

Recently, the study of the problem transformed from a static problem 
to a dynamic problem with multi-periods. Feng et al., (2020) integrated 
dynamic pricing with inventory decisions where loss is allowed. Li & 
Mizuno (2022) used different power structures to study the joint dy-
namic pricing and inventory problem in the dual channel. Keskin et al. 
(2022) established a model describing dynamic pricing and ordering for 
perishable items. 

In inventory management, inventory rationing is an essential topic. 
Topkis (1968) first proposed inventory rationing work as a static strat-
egy. Since then, research has shifted from static rationing strategies to 
dynamic ones, first studied by Teunter & Klein Haneveld (2008). Tur-
gay, Karaesmen, & Örmeci (2015) investigated a dynamic inventory 
rationing problem with random replenishment opportunities. In early 
studies, rationing is often used to link different types of demand to 
different ways of satisfying them. Recently, with the development of 
multi-channel supply chains, these different demand types are similar to 
different channels in the supply chain. Goedhart et al. (2022a) consid-
ered a store whose inventory fulfills in-store demand and online orders. 
They modeled it by a two-level Markov Decision Problem to maximize 
the expected profit. 

2.2. Application of deep reinforcement learning (DRL) 

Reinforcement learning is an unsupervised learning method that 
learns and updates itself by interacting with the environment, i.e., a 
machine learning algorithm that continuously learns by trial and error 
and modifies its behavior through the evaluative information it obtains. 
Deep reinforcement learning is an algorithm that combines deep 
learning and reinforcement learning methods and enables direct output 
of actions by introducing neural network structures. 

Proximal Policy Optimization (PPO) is an on-policy deep reinforce-
ment learning algorithm (Schulman, Wolski, Dhariwal, Radford, & Kli-
mov, 2017). On-policy means that it explores by sampling actions 
according to the latest version of its stochastic strategy. The amount of 
randomness in action selection depends on the initial conditions and the 
training procedure. During the training process, the randomness of the 
strategy usually decreases gradually as the update rules encourage it to 
exploit the rewards it has found. PPO is based on Trust Region Policy 
Optimization (TRPO). Compared with TRPO, PPO is a family of first- 
order methods and is easier to implement. 

With the widespread use of deep reinforcement learning, the PPO 
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algorithm is widely used to solve dynamic pricing and inventory man-
agement problems. Ding et al. (2022) proposed an efficient algorithm 
based on PPO called CD-PPO to solve the inventory management 
problem. Yang, Feng, & Whinston (2022) adopted the PPO algorithm to 
make pricing and information disclosure decisions over time. Goedhart 
et al. (2022b) used the PPO algorithm to optimize the rationing and 
ordering decisions of an omni-channel retailer. Wu, Bi, & Liu (2023) 
used the PPO algorithm to derive optimal dynamic pricing strategies 
with online reviews. 

Furthermore, there are various other DRL algorithms used in dy-
namic pricing and inventory management problems. Wang et al. (2021) 
designed a DRL algorithm based on the deep Q-network (DQN) to obtain 
an approximate optimal strategy for pricing and ordering decisions for 
perishable products. Oroojlooyjadid, Nazari, Snyder, & Takáč (2022) 
proposed a DQN algorithm to play the beer game, where agents select 
order quantities to minimize total costs. De Moor, Gijsbrechts, & Boute 
(2022) constructed an improved DQN algorithm with reward shaping to 
optimize the inventory management problem for perishable goods. 
Wang et al. (2022) proposed a hybrid simulation and reinforcement 

learning method to find a superior dynamic inventory replenishment 
strategy. Zhou et al. (2022) proposed an improved DQN method to solve 
the single-channel dynamic pricing and inventory management problem 
with reference price effect. 

Table 1 summarizes how our work compares to the existing literature 
and its position in the existing literature. To fill the knowledge gap, we 
focus on the joint dynamic pricing and inventory management consist-
ing of order quantity and inventory rationing decisions in an omni- 
channel supply chain and consider the unobservable state due to the 
uncertain demand market. Meanwhile, we use a deep reinforcement 
learning algorithm based on the PPO algorithm to improve the accuracy 
by adding the LSTM algorithm and invalid action mask. 

3. Problem formulation 

In this section, we set up a DPRR model for an omni-channel retailer 
in an uncertain demand market. We consider an omni-channel retailer 
with both online and offline channels using an integrated warehouse- 
storage inventory management approach and a uniform pricing 

Table 1 
Position of our work in the existing literature.  

Research Paper Dynamic Pricing Inventory replenishment Inventory rationing Channel Partially observed state DRL 

Our work √ √ √ Omni √ √ 
Wu et al., 2023 √   Single  √ 
De Moor et al., 2022  √  Single  √ 
Goedhart et al., 2022a  √ √ Omni   
Keskin et al., 2022 √ √  Single √  
Neghab et al., 2022  √  Single √ √ 
Li & Mizuno, 2022 √ √  Dual   
Oroojlooyjadid et al., 2022  √  Single  √ 
Wang et al., 2022  √  Single  √ 
Zhou et al., 2022 √ √  Single  √ 
Wang et al., 2021 √ √  Single  √ 
He et al., 2020 √ √  Dual   
Chen et al., 2020 √ √  Single   
Feng et al., 2020 √ √  Single    

Fig. 1. The interaction of an omni-channel retailer and the environment.  
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strategy for online and offline channels, which is widely used in omni- 
channel retailing (Wu, Zhao, Yan, & Wang, 2020). The online and off-
line inventory is proportionally rationed and the fulfillment rate of on-
line orders is ensured by online inventory blocking. We assume that the 
order cycle is positive and the lead time is considered to be zero. For out- 
of-stock items, we consider their full loss. 

A typical setup for an omni-channel retailer is to replenish once in 
each order cycle, and the inventory rationing can be dynamically 
adjusted daily (Goedhart et al., 2022a). Thus, the process of the DPRR 
problem can be divided into two levels. We assume that t = 0 is the first 
order point, and t = n*Γ (n = 0, 1,2,⋯) represents a series of order 
points, where Γ represents the retailer’s order cycle and is a positive 
constant. I0 represents the retailer’s initial existing inventory at the 
beginning of the planning horizon. In Level I, the replenishment decision 
is made at each order point. In Level II, the inventory rationing decisions 
yon

t and the uniform pricing decision pt are made at the beginning of 
period t. The Level II decisions are made once per period in the order 
cycle. 

Fig. 1 illustrates the interaction between the retailer and the envi-
ronment in the two-level DPRR model. At Level I, the retailer decides the 
order quantity at the beginning of each order cycle, which serves as the 
initial state of the inventory level in the Level II environment. At Level II, 
the retailer interacts with the environment by making Action II at the 
beginning of each period and receiving rewards and observations at the 
end of each period within one order cycle. The cumulative demand and 
reward obtained at Level II are then fed back to the Level I environment 
to inform the decision-making process for Action I. This iterative process 
continues throughout the decision-making cycle, enabling the retailer to 
optimize its dynamic pricing and inventory management strategies. The 
symbols of the parameters involved in the model and the decision var-
iables are shown in Table 2. 

We formulate the total demand function as price-dependent and the 
demand of each channel relies on the consumer distribution rate λ ∈

[0, 1] in the online channel. Thus, the total demand and the demand in 
each channel under price pt in period t are shown in Equations (1) - (3), 
where α represents the market size, β represents the price sensitivity and 
εt is the error term with E(εt) = 0. 

dt(pt) = α − βpt + εt (1)  

don
t (pt) = λdt (2)  

doff
t (pt) = (1 − λ)dt (3) 

To introduce the uncertainty of the market into the demand function, 
we set up the demand core state Φ indicates the various demand sta-
tistical features of the market, following Aviv & Pazgal (2005). When the 
state at period t is Ct = k, we say the demand pattern of period t is k. In 
our model, each state k ∈ Φ of the demand core state is characterized by 
a pair of price-dependent demand parameters (α, β) and an online de-
mand distribution rate λ. 

The objective of the DPRR model is to maximize the retailer’s ex-
pected profit over the finite horizon at each level. In Level II, the re-
tailer’s expected profit in period t is the sum of the profits in the online 
and offline channels, which are determined by the price decision pt and 
the online inventory rationing decision yon

t as follows: 

R
II
t

(
yon

t , pt,Ct, It
)
= R

on
t

(
yon

t , pt,Ct, It
)
+R

off
t

(
yon

t , pt,Ct, It
)

(4)  

R
on
t

(
yon

t , pt,Ct, It
)
=

⎧
⎪⎪⎨

⎪⎪⎩

(pt − cs)min
(
λdt, yon

t

)

− ch( yon
t − min

(
λdt, yon

t

) )

− cl( min
(
λdt, yon

t

)
− λdt

)
(5)  

R
off
t

(
yon

t , pt,Ct, It
)
=

⎧
⎨

⎩

ptmin((1 − λ)dt, (It − yon) )

− ch((It − yon) − min((1 − λ)dt, (It − yon) ) )

− cl(min((1 − λ)dt, (It − yon) ) − (1 − λ)dt )

(6)  

where ch, cl and cs are constants that represents the holding cost per item 
per period, lost-sales penalty per item, and shipping expense per item 
sold online, respectively, and are assumed not to vary over time. For the 
single-period problem in Level II, we present the concavity properties of 
the optimal pricing and inventory rationing policy in Theorem 1. As 
shown, the expected profit in any period is jointly concave with respect 
to (yon

t ,pt), which confirms the existence of at least one extremum point 
and verifies the feasibility of our optimization problem. 

Theorem 1. For any period t, the expected profit R II
t (yon

t , pt ,Ct , It) under 
given core state Ct and inventory level It , is jointly concave with respect to 
(yon

t ,pt). 

Proof. We first prove the expected profit R on
t
(
yon

t , pt
)

is jointly 
concave with respect to (yon

t ,pt). We can conduct a categorical analysis: 
i If λdt ≥ yon

t : 

ER
on
t

(
yon

t , pt
)
= (pt − cs)yon

t − cl( λ(α − βpt) − yon
t

)

In this case, ER
on
t
(
yon

t , pt
)

is a bilinear function of (yon
t ,pt). 

ii If λdt < yon
t : 

ER
on
t

(
yon

t , pt
)
= (pt − cs)λ(α − βpt) − ch( yon

t − λ(α − βpt)
)

In this case, the first term is a quadratic function of pt, and the co-
efficient of the quadratic term is negative, making it a concave function 
with respect to (yon

t , pt) and the second term is a linear function with 
respect to (yon

t ,pt). 
Thus, for both cases, the expected online profit R on

t
(
yon

t , pt
)

is jointly 
concave with respect to (yon

t , pt). Using the same approach, we can 
demonstrate that the expected offline profit R

off
t
(
yon

t , pt ,Ct , It
)

is also 
jointly concave with respect to (yon

t ,pt). Therefore, based on the Equation 
(4), we can deduce that the single-period expected profit is jointly 
concave with respect to (yon

t ,pt). 
The retailer’s objective in Level II is to jointly optimize inventory 

rationing and pricing policy to maximize the total expected discounted 
profits over the order cycle. The Level II profit-to-go value function VII

t (It ,
Ct), which represents the expected discounted total profit from period t 
to the end of the current order cycle that can be achieved from the 
current state onwards, satisfies the following dynamic programming 
recursion: 

VII
t (It,Ct) = max

pt ,yon
t

E
(
R

II
t

(
yon

t , pt,Ct, It
)
+ γEVII

t+1(It+1,Ct+1)
)

(7) 

Table 2 
Description of symbols.  

Parameters 
Γ Order Cycle 
ch Holding cost per item per period 
cl Lost-sales penalty per item 
cs Shipping expense per item purchased online 
co Order cost per item 
It Inventory level at the beginning of period t 
dt Total demand of period t 
λ Demand distribution rate in online channels of period t 
Φ Demand core state 
R I

t Reward function of Level I for each order cycle 

R II
t Reward function of Level II at time t (R II

t = R on
t + R

off
t )

R on
t Online-channel profit of period t 

R
off
t 

Offline-channel profit of period t 
γ Discount factor 
Decision variables 
QnΓ Order-up-to level at an order point 
pt Non-negative discrete variables indicating uniform price at time t 
yon

t Non-negative integer variables indicating online inventory rationing of 
period t 

yoff
t 

Non-negative integer variables indicating online offline-channel inventory 
rationing of period t (yoff

t = It − yon
t )  
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where γ ∈ [0,1] is the discount factor and It+1 is the next state of in-
ventory level under action (pt , yon

t ) as It+1 =
(
yon

t − λdt
)+

+
(
It − yon − (1 − λ)dt

)+. 
In the Level I problem, the retailer’s profit is determined by the cu-

mulative profit earned from Level II decisions throughout an order cycle, 
along with the order cost per item, denoted as co, for the order quantity 
decided at the beginning of each order cycle. The expected profit in 
Level I of an order cycle can be calculated using Equation (8). The 
objective of the Level I problem is to optimize the ordering quantity to 
maximize the total expected discounted profits over the entire decision- 
making horizon. The Level I profit-to-go value function VI

nΓ(InΓ) repre-
sents the expected total profit from cycle n to the end of decision-making 
horizon that can be achieved under the current state InΓ, as shown in 
Equation (9): 

R
I
nΓ(InΓ,QnΓ) =

∑(n+1)Γ− 1

t=nΓ
R

II
t − co*(QnΓ − InΓ) (8)  

VI
nΓ(InΓ) = max

QnΓ
E
(

R
I
nΓ(InΓ,QnΓ)+ γΓEVI

(n+1)Γ

(
I(n+1)Γ

) )
(9)  

where QnΓ satisfy InΓ ≤ QnΓ ≤ Qmax. Qmax is the maximize order con-
straints, such as the transport capacity. 

4. Methodology 

There are several methods proposed to deal with dynamic pro-
gramming. However, as the state and action space dimensions increase, 
it becomes difficult to solve in a reasonable computational time. Thus, 
DRL is introduced to solve it by a near-optimal approach. The PPO al-
gorithm has been shown to be efficient in dealing with dynamic pricing 
and inventory management problems. For our multi-dimensional 

discrete action space problem, we improve the basic PPO algorithm by 
introducing the LSTM algorithm as the prediction algorithm and an 
invalid action mask as an enhancement to solve the state-dependent 
action space, which is called ML-PPO. 

4.1. POMDP model 

According to the DPRR model, the whole process is divided into two 
levels of decision-making. The first level is the replenishment problem at 
the point of order, and the second is the daily pricing and inventory 
rationing problem. Since the demand core state and consumer distri-
bution in each state are not observable, the problem is defined as a 
Partially Observable Markov Decision Process. The details of the POMDP 
model are given as follows. 

4.1.1. State and observation spaces 
S is a set of all possible environment states consisting of the current 

inventory level It and demand core state Ct, represented as s =

{I,C, t} ∈ S . 
O is the observation space, which differs from the state space in the 

POMDP. For omni-channel retailers, the demand core state, including 
the relationship between price and demand and the distribution rate 
across online and offline channels, are vital points for pricing and in-
ventory control. However, the retailer cannot observe the demand core 
state directly. Instead, at the beginning of period t, the retailer can 
observe the previous demand in each channel. Since the retailer has 
different concerns at two levels, each level has a different observation 
state. For Level I, the retailer pays more attention to the whole state of an 
order cycle, so the observation state of Level I consists of the inventory 
level at the end of an order cycle and the cumulative demand during the 
order cycle as DnΓ =

∑(n+1)Γ− 1
t=nΓ dt . Thus, the observation state of Level I is 

oI = {I,D,n}. For Level II, the observation state consists of the current 

Fig. 2. Schematic diagram of agent II and environment in ML-PPO.  

Fig. 3. Schematic diagram of agent I and environment in ML-PPO.  
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inventory level It and the demand (don
t− 1,d

off
t− 1) of the previous period in 

each channel, as oII = {I,don,doff , t}. 

4.1.2. Action spaces 
For Level I, the action is the order-up-to level QnΓ at each order point. 

The order-up-to level cannot be less than the current inventory level and 
cannot be more than the maximum storage capacity. Thus, the Level I 
action space is QnΓ ∈ [InΓ,Qmax]

For Level II, the actions include pricing and inventory rationing as 
at = {pt , yon

t } ∈ A t. The first action pt represents the uniform price of 
both channels and the second action yon

t represents the inventory ra-
tioning to the online channel. From a real-world perspective, they are 
both discrete variables. Since there are costs and market normative 
prices for items, there is a range constraint on product pricing, i.e., pt ∈

P = [pmin,pmax]. The inventory rationing decision is based on the current 
inventory level at the beginning of each period and there is a need to 
satisfy yon

t ∈ Y t = (0,1,⋯, It) and yoff
t can be calculated as yoff

t =

It − yon
t . 

4.2. ML-PPO algorithm 

4.2.1. Agent and environment 
To solve this two-level POMDP model, we set two agents to learn the 

strategies respectively. The structure of each agent and the environment 
are shown in Fig. 2 and Fig. 3. We begin with training the Level II agent 
by interacting with the Level II environment and updating the network 
parameters to obtain the near-optimal policy. Then, we use the trained 
Level II agent as a part of the Level I environment, which can give a near- 
optimal policy under the replenishment quantity and get a cumulative 
reward of the order cycle to send back to the Level I agent. 

4.2.2. Invalid action mask 
The action space is discrete and state-dependent in the DPRR prob-

lems. Thus, not all actions are reasonable in certain states. If retailers try 
an unallowable action, computation time will be wasted and the agent 
may not receive an appropriate reward from the environment. In order 
to solve these actions, a technique named Invalid action masking has been 
proposed and used in recent works (Huang & Ontañón, 2022). 
Compared with an invalid action penalty, which means the agent will 
receive a negative reward when choosing invalid action, invalid action 
masking means that the agent will receive a mask so that only valid units 
can be selected. The core of invalid action masking is to put a ‘mask’ on 
the vector of the output action or value function, such as dot-multiply a 
vector {0,1} or { − ∞,1}. 

In the DPRR model, the order-up-to level QnΓ is restricted to the 
range [InΓ,Qmax] and the invalid action mask for the replenishment 
quantity is shown as follows: 

maskQ[i] =

⎧
⎨

⎩

1 if QnΓ ≥ InΓ

0 if QnΓ < Qmin

∀i ∈ [0,Qmax] (10) 

At each period t, the inventory rationing action yon
t must be less than 

the current existing inventory level It and the price pt must restrict to the 
range [pmin, pmax]. Thus, the invalid action mask for the inventory ra-
tioning and the price can be shown as follows: 

maskr
t [i] =

⎧
⎨

⎩

1 if yon
t ≤ It

0 if yon
t > It

∀i ∈ [0, I0] (11)  

maskp
t [i] =

{
1 if pt ≤ pmin

0 if pt ≥ pmin
∀i ∈ [0, pmax] (12)  

4.2.3. Implementation of ML-PPO 
PPO follows the Actor-Critic framework with an actor-network and a 

critic network. The actor selects the action based on the probability 
distribution, the critic judges the score based on the action generated by 
the actor, and the actor then modifies the probability of the selected 
action based on the critic’s score. The input of both networks is the 
observation from the environment. The output of the actor-network is 
the action probability π(at |st) for the discrete action, and the output of 
the critic network is an estimation of the expected future discounted 
profits of the current state. There are two primary variants of PPO. The 
first one is PPO-Penalty which approximates a KL-constrained, penalizes 
KL-divergence in the objective function instead of making it a hard 
constraint, and automatically adjusts the penalty factor during training. 
The second one is PPO-Clip which uses specialized clipping in the 
objective function to keep the new policy not far from the old one. In this 
paper, we mainly focus on PPO-Clip, which updates policy by Equation 
(13). 

θk+1 = argmaxEs,a∼ πθk
(L(s, a, θk, θ) ) (13)  

The L is defined as 

L(s, a, θk, θ) = min
(

πθ(s|a)
πθk (s|a)

Ât, clip
(

πθ(s|a)
πθk (s|a)

, 1 − ∊, 1 + ∊
)

Ât

)

(14)  

where ∊ is a hyperparameter that defines the maximum degree that the 
new policy can get away from the old one and Ât is an estimator of the 
advantage function of period t. 

To solve the unobservable state, we use the Long-Short-Term- 
Memory (LSTM) algorithm as a prediction model to forecast the de-
mand in the future. LSTM is a special RNN, mainly solving gradient 
disappearance and gradient explosion problems while training long se-
quences (Hochreiter & Schmidhuber, 1997). For Level I, LSTM aims to 
forecast the sum demand during an order cycle to instruct the replen-
ishment decisions. For Level II, LSTM is trained to forecast the online 
and offline demand in the future. Lp is defined as the prediction length. 

Furthermore, a history data set H t is collected during the training 
process of ML-PPO to update the LSTM network according to the current 
environment. The length of history data is set to be Lh, and it collects the 
observations of demand of each past period as Equation (15). If the data 
length exceeds Lh, the oldest data is deleted to accommodate the newest 
data. 

H t =
{(

pt− 1, don
t− 1, d

off
t− 1

)
,
(
pt− 2, don

t− 2, doff
t− 2

)
,⋯,

(
pt− Lh , don

t− Lh , doff
t− Lh

)}
(15) 

In the ML-PPO algorithm, we concatenate the current observation 
and the predictions of the future state as the input of the PPO agent and 
use the invalid action mask to filter the unallowable actions. We sum-
marize our ML-PPO method in Algorithm 1.  

Algorithm 1: ML-PPO 

Initial policy parameters θ0, initial value function parameters ϕ0 
Input LSTM parameters η0 
For episode k = 0 to M do 

Reset the marketing environment 
Initial state I0, initial history data set H 0 

For t = 0 to T do 
Agent observes the current observation ot 

LSTM predict the future demand Dt = {dt+1 ,⋯,dt+Lp }

Concatenate the observation ot and prediction Dt and input into the PPO agent 
Mask the action space based on the state 
Select a valid action at based on the policy πθk 

Execute the action at and observe R t and ot+1 

Collect the set D k = {τt} = {(o0,a0,R 0),⋯, (ot ,at ,R t)}

Compute rewards-to-go R̂ t 

Compute advantage estimates, Ât based on the current value function Vϕk 

Update the history data set H t : 
If the history data length exceeds Lh Then 

Update H t+1 =
(

H t −
(

pt− Lh , don
t− Lh , d

off
t− Lh

))
∪
(

pt+1 , don
t+1 , d

off
t+1

)

Else 

(continued on next page) 
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(continued ) 

Algorithm 1: ML-PPO 

Update H t+1 = H t ∪
(

pt+1 , don
t+1 , d

off
t+1

)

End for 
Update the LSTM parameters ηk+1 
Update the policy by maximizing the PPO-Clip objective in Equation (13) via SGD 
with Adam 
Fit value function by regression on mean-square error: 

ϕk+1 = argmin
ϕ

1
|D k|T

∑

τ∈D k

∑T
t=0

(
Vϕ(ot) − R̂ t

)2 

End for  

5. Simulation experiments 

We conduct several simulation experiments to evaluate the proposed 
ML-PPO algorithm. We evaluate the performance of the algorithm by the 
average episode cumulative profit and the service level, where an 
episode is equal to an order cycle. We test ten consecutive order cycles to 
avoid randomness in the results and use the average cumulative profit as 
the final result. We use three kinds of value iteration algorithms, which 
can obtain the exact solution in small-scale instances, as the baselines to 
evaluate the accuracy of the ML-PPO algorithm. Furthermore, we use 
the PPO algorithm as the baseline to evaluate the degree of improve-
ment of the ML-PPO algorithm. 

5.1. Environment setup 

5.1.1. Algorithm parameters setting 
To implement the ML-PPO algorithm, we performed some experi-

ments to improve the performance of our ML-PPO algorithm by tuning 
the parameters and investigating the results of a base test case. We 
evaluated different neural network architectures, learning rates, and 
batch sizes. The parameters we used are listed in Table 3. 

In the ML-PPO algorithm, we follow the actor-critic framework of the 
PPO algorithm, which consists of two neural networks, actor and critic, 
with neurons in the input and output layers corresponding to the di-
mensions of the state and decision variables, respectively, and two 
hidden layers, with 64 neurons each. The learning rate is 0.0001, the 
batch size is 64, and the clipping parameter is 0.2. Furthermore, the 
prediction network consists of three LSTM cells. Each cell has two LSTM 
layers with a width of 64 and adopts the Adam optimizer. The batch size 
is 128, and MSE is adopted as the loss function. In the invalid action 
mask approach, we set the output of invalid actions in the actor neural 
network to a small negative value, which is 10− 8 in our experiment 
setting, before the softmax activation layer so that the probability of 
selecting these actions becomes negligible. 

To train the prediction network, we conduct pre-experiments to collect 
training data and the network is well-trained before being used in the ML- 
PPO. During the pre-experiments, retailers make pricing decisions 
randomly to interact with the environment and the actions and observa-
tions of previous demand are stored as training data. Using these training 
data, we train the prediction network to efficiently predict the future online 
and offline demand, which can be directly used in the ML-PPO algorithm. 

All the networks are set up by Pytorch 1.12.0. The open-source Py-
thon library Gym is used to establish the interaction between the 
learning algorithms and the environments (Brockman et al., 2016). All 
models are run on a server with an NVIDIA GeForce RTX 3060 GPU and 
32 GB RAM. We follow the simulation procedure as Goedhart et al., 
(2022b) that all the following models are simulated for 1,000,000 pe-
riods because of a warm-up period. 

5.1.2. Simulation parameters setting 
To evaluate the performance of the ML-PPO algorithm, we construct 

simulations of the DPRR model. We set up a base test and the value of the 
parameters is shown in Table 4. The market size is assumed to be con-
stant, so the demand core state consists of several potential values of the 
price sensitivity and demand distribution, which are randomly selected 
by the environment at the same probability. For example, in the base 
test, there are two potential values for both β and λ. The demand core 
state contains four different demand patterns and the environment se-
lects each with a probability of 0.25. Furthermore, the lost-sale penalty 
cl is set to be 50 percent of the sales price of each period. 

5.2. Experiment results 

Since there are two levels in the DPRR model with different decision 
variables, we conduct the ML-PPO algorithm in each level of the DPRR 
model respectively to evaluate the performance and conduct robustness 
checks on the results. 

5.2.1. Evaluation of ML-PPO algorithm 
In this section, we conduct the ML-PPO algorithm on both the dy-

namic pricing and rationing problems in Level II and the dynamic in-
ventory replenishment in Level I to evaluate the performance of ML- 
PPO. 

5.2.1.1. Level II: Dynamic pricing and rationing. We first compare the 
performance of ML-PPO with three value iteration algorithms to test its 
accuracy in small-scale experiments. The parameters of the experiments 
are shown in Table 5. We train the ML-PPO algorithm under the base test 

Table 3 
Value of parameters in ML-PPO algorithm.   

Parameter Value 

PPO Depth of NN 2 
Width of NN 64 
Learning rate 0.0001 
Batch size 64 
Clipping parameter 0.2 

LSTM LSTM cell 3 
Width of cell 64 
Batch size 128 
Loss function MSE  

Table 4 
Value of parameters in the base test of the DPRR model.  

Parameter Value Explanation 

Γ 3 Order Cycle 
ch 0.5 Holding cost per item per period 
cl 50 % Lost-sales penalty per item 
cs 3 Shipping expense per item purchased 

online 
co 5 Order cost per item 
α 40 Market size 
Φ β ∈ {1.5, 2},λ ∈ {0.4,

0.6}
Demand core state 

εt [ − 2, − 1,0,1,2] Demand error term 
pmin 10 The lower bound of the sales price 
pmax 15 The upper bound of the sales price 
Qmax 60 The upper bound of the order quantity 
γ 0.99 Discount factor  

Table 5 
Values of parameters in small-scale experiments.  

Experiment Demand core state State 
spaces 

Observation 
spaces 

Action 
spaces 

Base test β = {1.5,2},λ =

{0.4,0.6}
612 21,600 306 

E-1 β = 2,λ = 0.6 153 12,150 306 
E-2 β = 2,λ = {0.4,0.6} 306 12,150 306 
E-3 β = {1.5,2},λ = 0.6 306 21,600 306  
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parameters and discuss the impact of demand uncertainty by varying the 
number of potential values in the demand core state in Experiments E1- 
E3. 

The three value iteration algorithms contain fully-observation value 
iteration (FO-VI), partially-observation value iteration (PO-VI) and de-
mand forecast value iteration (DF-VI).1 The solution of FO-VI can be 
seen as the exact solution to the DPR problem with full observation. The 
ML-PPO and DF-VI algorithms solve the DPR problem with partial 
observation and demand forecasting and PO-VI algorithms have no idea 
about the demand. Fig. 4 shows the results of the comparative experi-
ments of the three value iteration algorithms and ML-PPO algorithms by 
the average episode profit of the three algorithms in each experiment. In 
all the tests, the performance of the FO-VI algorithm was consistently the 
best. In the four different demand environments, the ML-PPO algorithm 
performs second best, slightly outperforming the DF-VI algorithm and 
significantly outperforming the PO-VI algorithm. Thus, the results show 
that the uncertainty of the demand market brings more difficulty in the 
DPR problem, and the ML-PPO can obtain near-optimal solutions under 
the uncertain environment. 

Then, we compare the results with different degrees of demand 
market uncertainty. When there is no demand market uncertainty in 
Experiment E-1, the average profits of the four algorithms are almost 
consistent. Comparing the results of Experiments E-1-E-3, it is obvious 
that as the demand market uncertainty increases, the optimal gap be-
tween ML-PPO and FO-VI becomes more significant, which indicates the 
negative effect of the demand uncertainty on the retailers’ profit. 
Furthermore, the sources of demand market uncertainty are analyzed. In 
Experiment E-2, there is only uncertainty in the demand distribution and 
the average profits of ML-PPO and FO-VI do not have significant dif-
ferences, which means that fluctuations in the demand distribution have 
little impact on pricing and rationing decisions. In Experiment E-3, 

demand price sensitivity varies randomly with a constant demand dis-
tribution, and the gaps between the three algorithms occur, which 
means that demand price sensitivity is a vital factor in retailers’ de-
cisions and profits. 

Subsequently, we scale up the problem scenarios to a large-scale 
setting: the order cycle consists of seven periods (Γ = 7), the market 
size α increases to 70, the initial inventory level I0 increases to 300 and 
the uncertainty of the demand market increase to nine potential demand 
patterns in the demand core state Φ. Six sets of experiments are designed 

by varying the degree of environmental uncertainty and the demand 
forecasting length in the ML-PPO algorithm, as presented in Table 6. 
Given the suboptimal performance of the VI algorithm in large-scale 
settings, we employ the PPO algorithm and a full-information myopic 
grid search approach (FM-GD) for comparative evaluations in this 
section. 

In the FM-GD approach, we assume that the retailer has access to full 
information at the beginning of each period, such as demand patterns 
and consumer preferences. Leveraging this full information, the retailer 
performs a grid search within the feasible range of decision variables to 
determine the myopic pricing and inventory rationing decisions that 
maximize the profit for the current period. Table 7 presents a compar-
ison of the average episode profits for the three methods across the six 
experimental designs. 

From Table 7, it can be observed that the average episode profits of 
ML-PPO are slightly lower than FM-GD approach, and surpass FM-GD 
when the prediction length is set to 3. This result suggests that ML- 
PPO, when dealing with partially observable problems, can utilize 
interactive learning and demand forecasting to acquire information and 
make relatively superior decisions. Additionally, ML-PPO out-
performing FM-GD validates the advantage of long-term decision-mak-
ing over short-term to obtain a higher profit. Therefore, when retailers 
make decisions, they should consider short-term and long-term benefits 
in a balanced manner to ensure decision efficiency while maintaining 
higher profits. 

Moreover, when comparing ML-PPO and PPO, it is clear that ML-PPO 
outperforms in all experiments and the best improvement degree can 
reach about 2.4 % when the prediction length is 3. Additionally, the 
training processes of PPO and ML-PPO in all experiments are shown in 
Fig. 5 and Fig. 6. Fig. 5 shows the training process of PPO and ML-PPO 
under different demand markets. During the training process, in the four 
scenarios, the overall convergence trends of the algorithms do not 
change significantly, but ML-PPO outperforms the PPO algorithm in 
terms of average profits. The results reflect that compared to PPO, 

Fig. 4. Results of comparisons with FO-VI, PO-VI and DF-VI.  

Table 6 
Values of parameters in large-scale experiments.  

Experiment Demand core state Prediction length State spaces Observation spaces Action spaces 

L-1 β = 2,λ = 0.6 1 2107 170,100 1806 
L-2 β = 2,λ ∈ {0.4,0.5,0.6} 1 6321 170,100 1806 
L-3 β ∈ {1.5,2, 2.5},λ = 0.6 1 6321 303,408 1806 
L-4 β ∈ {1.5,2, 2.5},λ ∈ {0.4,0.5,0.6} 1 18,963 303,408 1806 
L-5 β ∈ {1.5,2, 2.5},λ ∈ {0.4,0.5,0.6} 3 18,963 303,408 1806 
L-6 β ∈ {1.5,2, 2.5},λ ∈ {0.4,0.5,0.6} 5 18,963 303,408 1806  

Table 7 
Average episode profit of PPO, ML-PPO and FM-GD.  

Experiment PPO ML-PPO FM-GD PPO/ML- 
PPO 

ML-PPO/FM- 
GD 

L-1  3250.74  3279.97  3290.63  99.81 %  99.68 % 
L-2  3342.23  3350.34  3392.86  99.76 %  98.75 % 
L-3  3202.44  3236.26  3261.57  98.95 %  99.22 % 
L-4  3286.85  3346.21  3355.97  98.22 %  99.71 % 
L-5  3286.85  3364.42  3355.97  97.69 %  100.25 % 
L-6  3286.85  3295.09  3355.97  99.75 %  98.19 %  

1 Details in Appendix A. 
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although adding a prediction component as ML-PPO cannot accelerate 
the convergence speed of the algorithms, it can effectively improve the 
accuracy of a retailer’s decisions in the face of both stable and uncertain 
markets. Furthermore, it is clear from the four figures in Fig. 5 that as the 
number of core demand states increases, the fluctuations of the average 
episode profit become larger even when the profit is nearly converged. 
This phenomenon is reasonable because of the uncertainty of demand, 
which greatly impacts the final profit and reflects the difficulty of 
decision-making under the uncertain environment from the side. 

Fig. 6 shows the training process of PPO and ML-PPO with different 
prediction lengths Lp. It is clear that when the profits converge, the ML- 
PPO results are significantly better than the PPO, which means that the 
proposed algorithm can improve the accuracy of the solution. Further-
more, there are three different prediction lengths Lp varying from 1 to 5. 
Contrary to our speculation, it is not the case that the longer the pre-
diction length provides, the better the results. The ML-PPO algorithm 
performs the best for Lp = 3, followed by Lp = 1, and finally Lp = 5. One 
of the reasons for this phenomenon is that the error of the prediction 
algorithm increases with the prediction length. Although a longer pre-
diction period provides more information to the retailer, its reduced 
accuracy can also lead to biased decisions. 

Fig. 5. Training process of PPO and ML-PPO under different demand market.  

Fig. 6. Training process of algorithms in large-scale experiments.  

Fig. 7. Rationing strategy and inventory level change in base test.  
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5.2.1.2. Level I: Dynamic inventory replenishment. Based on the trained 
ML-PPO algorithm of the DPR problem in the base test, we set up the 
dynamic inventory replenishment (DR) environment in Level I with the 
trained agent of Level II, as shown in Fig. 3 as the complete DPRR model, 
and conduct experiments on it in this sector. Inventory replenishment is 
made at each order point, and it concentrates on the cumulative profit 
during the order cycle instead of the instance profit. Although Level I 
and Level II have different action spaces and action periods, they face 
the same environment. With the extension from Level II to Level I, the 
state space is more complex, and it is difficult for the VI algorithms to 
solve in an acceptable time. Thus, we use ML-PPO and PPO algorithms to 
solve the DR problems. Additionally, except for the profit, we also 
consider the service level as a performance indicator of the solutions. A 
simple way to calculate the service level is to take the number of items 
sold and the number of items that could not be sold due to a lack of stock. 

Figs. 7 and 8 illustrate the decision paths for dynamic ordering, ra-
tioning, and pricing obtained for the base test. At the ordering point, the 
optimal order quantity remains stable at the maximum order quantity 
(Q = Qmax = 60). Due to this stable order quantity, the initial inventory 
at the beginning of each ordering cycle is the same. As a result, the 
optimal pricing decisions and inventory rationing decisions exhibit 
relatively stable oscillations over ordering cycles, and they are dynam-
ically adjusted in coordination based on the current remaining inventory 
level of each period. 

According to the base test, we design four experiments that vary the 
uncertainty of the environments to evaluate the performance of the ML- 
PPO algorithm in solving the DPRR problems. The results are presented 
in Table 8. 

Table 8 shows that the ML-PPO algorithm has a higher profit and 
service level than the PPO algorithm in the base test, and the perfor-
mance of the ML-PPO algorithm is stable or even better when varying 
the demand uncertainty in the DPRR models. The optimal cumulative 
profit of ML-PPO exceeds PPO by up to 6 %. The service level of ML-PPO 
is about 1.4 % higher than the PPO algorithm, which means that the 
inventory quantity can fulfill more demand over an order cycle. The 
service levels can reach 1 with the ML-PPO algorithm when the demand 
market uncertainty is low. As the demand uncertainty increases, the 
solution difficulty increases, resulting in lower service levels and profits. 
These results indicate that the ML-PPO algorithm consistently out-
performs the basic PPO algorithm across various demand environments. 

5.2.2. Robustness checks 
In this section, we conduct several additional experiments to 

examine the robustness of the numerical results. We achieve this by 
systematically varying the parameter settings in the proposed model. By 
exploring different scenarios, we can gain insights into the sensitivity of 
the model to different input parameters and better understand the im-
plications of these variations on the overall outcomes. 

5.2.2.1. Level II: Dynamic pricing and rationing. First, we test the 
robustness of our results of DPR problem by varying the values of the 
initial inventory level, and several costs of the base test to compare the 
average profit of ML-PPO, FO-VI, PO-VI and DF-VI algorithms. Experi-
ments R1-R2 vary the initial inventory level I0 from 40 to 60, and Ex-
periments R3-R5 change the value of holding cost, lost sale penalty, and 
shipping expense, respectively. The experiment settings and the results 
are summarized in Table 9. 

In Table 9, the average profits of the trained ML-PPO algorithm with 
different initial inventory levels are compared. When the initial in-
ventory level is insufficient, the profits in all algorithms decrease 
significantly, and the gap between ML-PPO and FO-VI is stable, which 
means that ML-PPO can solve the insufficient inventory scenario effi-
ciently. When the initial inventory level is sufficient, the average profits 
remain stable, and ML-PPO, PO-VI and DF-VI can achieve almost the 
same profit. On the other hand, the results reflect that the initial in-
ventory level plays an important role in the profit, and the initial in-
ventory level is the decision variable of the Level I problem. Therefore, 
conducting the latter experiments on Level I problems is meaningful. 

Then, we vary the economic parameters, including holding cost, lost- 
sales penalty and shipping expense parameters. The gap between ML- 
PPO and FO-VI becomes larger when the holding cost increases, which 

Fig. 8. Optimal pricing strategy in base test.  

Table 8 
Profit and service level for DPRR problems of PPO and ML-PPO.  

Experiments Cumulative Profit Service Level 

ML-PPO PPO PPO/ML-PPO ML-PPO PPO PPO/ML-PPO 

β = 2,λt = 0.6  2860.81  2732.23  95.51 % 1  0.986  98.60 % 
β = 2,λt = {0.4,0.6} 2975.22  2938.04  98.75 % 1  0.991  99.10 % 
β = {1.5, 2},λt = 0.6  3089.93  2903.22  93.96 % 0.979  0.969  98.98 % 
β = {1.5, 2}, λt = {0.4, 0.6} a  3183.75  3005.88  94.41 % 0.984  0.972  98.78 %  

a Base test. 

Table 9 
Robustness check results of DPR problems.  

Experiment I0 ch cl cs Average profit 

ML-PPO FO-VI PO-VI DF-VI 

Base test 50 0.5 50 % 3 535.9  566.5  485.61  516.73 
R-1 40 0.5 50 % 3 451.5  467.17  393.1  449.5 
R-2 60 0.5 50 % 3 539.9  566.22  540.64  542.56 
R-3 50 1 50 % 3 494  541.17  441.71  490.26 
R-4 50 0.5 70 % 3 518.7  550.72  471.43  513.42 
R-5 50 0.5 50 % 5 486.1  521.85  439.53  474.93  
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means that the rationing decisions have a significant impact on the in-
ventory quantity and then reflect in the final profit of the retailers. 
Meanwhile, the increase in lost-sale cost and shipping cost causes a 
decrease in profit, but the performance of ML-PPO is stable and efficient. 
The main results remain qualitatively the same in the robustness check 
experiments, which shows that the proposed ML-PPO can solve prob-
lems efficiently, even under more negative conditions. 

5.2.2.2. Level I: Dynamic inventory replenishment. According to the base 
test, we design another four experiments that vary the values of the 
holding cost, the lost-sale cost, the shipping expense, and the order cost 
per item to test the robustness of our results. The experiment settings 
and the results are summarized in Table 10. 

From Table 10, it is observed that when the holding cost increases, 
both the profit and the service level decrease. This is mainly the result of 
the balance between profit and service level: if more items are ordered at 
the order point, more items are likely to fulfill the demand and be stored 
in storage. More items fulfilled means an increase in service level, and 
more items in storage mean a high holding cost, which reduces the 
profit. Thus, the increased holding cost increases the pressure on in-
ventory management, leading to reduced profits and lower service 
levels. Under this pressure, the ML-PPO algorithm can still achieve a 
higher profit and service level than the PPO algorithm. 

In contrast, the increased lost-sale cost leads to higher profit and 
service levels in both algorithms. The lost-sale cost is an index of possible 
losses caused by out-of-stocks, and a higher lost-sale cost means that the 
retailer will pay more penalty for out-of-stocks. Thus, the higher lost- 
sale cost will raise the attention of retailers and avoid the loss of de-
mand for this item and the service level will improve at the same time. 
As for the profit, although the increase in cost is more likely to cause a 
reduction in profit, the service level is high and the reduction can be 
covered by the income of meeting more demand. The increase in the 
shipping expense will result in a decrease in profit but will have little 
impact on the service level. 

With the changes in the order cost, the profit and service level have 
also changed. The base level is set at 5, and when it is reduced to 3, the 
profit has a significant increase, especially in the ML-PPO algorithm, and 
the service level increases to a higher level of 0.987. Meanwhile, when 
the ordering cost increases to 7, the profit reduces rapidly, and the 
reduction degree of the ML-PPO algorithm is less than that of the PPO 
algorithm, which means that the ML-PPO algorithm has more ability to 
deal with more terrible conditions. It is the same with the reduction of 
the service level. The changing pattern is easy to interpret that the 
ordering cost is the most direct parameter associated with the inventory 
replenishment. The more items are ordered, the more costs have to be 
paid. Thus, under this condition, the retailer has no incentive to order 
more items to fulfill more demand at the cost of losing more profit. In 
general, our main results remain qualitatively the same across all the 
experiments. 

5.3. Discussion 

It is worth further discussing that, in our simulation experiments, the 
training data is obtained through online interactions between the agent 
and the simulated environment. However, in real business scenarios, 
retailers cannot engage in extensive interactions with the real environ-
ment to acquire data and train models. Therefore, how to train and apply 
this method in real-world situations is a challenge we need to address 
further. 

Based on our research findings, we suggest that employing a ‘market 
simulator’ to assist training can facilitate the practical implementation 
of the method, which is also proposed by (Afshar, Rhuggenaath, Zhang, 
& Kaymak, 2023; Qiao, Huang, Gao, & Wang, 2024). In this approach, 
retailers are not required to engage extensively with the real market 
environment to collect information and train models. Instead, they can 
derive a market simulator based on historical sales data and achieve 
model training through extensive interactions with the simulator. 

Undeniably, the market simulator may exhibit certain disparities 
compared to the actual market environment. Hence, when retailers 
interact with the real environment using decision results from the 
model, continuous optimization and adjustments to the market simu-
lator can be implemented by comparing expected outcomes from the 
simulator with actual results. The real interaction data, in turn, serves as 
training data for further refining the model. This approach thus facili-
tates effective training and optimization of the DRL algorithm within a 
simulated environment, aligning with the intricacies of real-world 
business scenarios. 

6. Conclusion 

In this paper, we studied the dynamic pricing and inventory man-
agement problem of omni-channel retailers who make daily pricing and 
inventory rationing decisions across online and offline channels and 
replenish at order points in an uncertain demand market. To maximize 
the retailer’s profit, we developed a DPRR model and used a two-level 
POMDP to describe the dynamic process since the decisions have 
different cycles and some states of the market environment are unob-
servable. We proposed to use an ML-PPO algorithm, which concatenates 
the observation of the environment and the predictions of the future 
state as the input of the PPO agent and uses the invalid action mask to 
filter the unallowable actions. Several simulation experiments were 
conducted to evaluate the performance of the ML-PPO algorithm by 
comparing it to the FO-VI algorithm, PO-VI algorithm, and PPO algo-
rithm. The results reveal that the ML-PPO algorithm can obtain near- 
optimal solutions to the DPRR problems and outperform the PPO algo-
rithm in terms of the retailer’s profit and service level. Meanwhile, the 
generalization ability of the ML-PPO algorithm is verified across various 
market environments, making it practical for omni-channel retailers to 
deal with DPRR problems. These findings have significant implications 
for the retail industry and offer a new approach to optimizing pricing 
and inventory strategies in the era of omni-channel retailing. Further-
more, while we discussed how to implement the proposed algorithm in 
real-world, there is still room for a more detailed exploration of this 
issue to arrive at a better solution. 

Furthermore, the results of our study also provide valuable man-
agement insights for omni-channel retailers. Firstly, the significant 
improvement in ML-PPO algorithms imply the importance of using 
historical data to predict future demand accurately. Thus, retailers 
should also pay more attention to research on accurate prediction of 
future demand to support better decision-making. Additionally, when 
retailers make decisions about which products to sell or which markets 
to target, they should take the uncertainty of demand into account. 
Focusing on products or markets with more predictable demand patterns 
can significantly reduce decision-making complexity and increase the 
likelihood of achieving expected profits. Moreover, our findings high-
light that retailers’ profit is not only dependent on pricing and inventory 

Table 10 
Robustness check results of DPRR problems.  

Experiments Cumulative Profit Service Level 

ML-PPO PPO PPO/ML- 
PPO 

ML- 
PPO 

PPO PPO/ML- 
PPO 

ch = 0.5 a  3183.75  3005.88  94.41 %  0.984  0.972  98.78 % 
ch = 1  3144.89  2914.02  92.66 %  0.976  0.968  99.18 % 
cl = 50% a  3183.75  3005.88  94.41 %  0.984  0.972  98.78 % 
cl = 70%  3486.32  3269.16  93.77 %  0.988  0.976  98.79 % 
cs = 1 a  3183.75  3005.88  94.41 %  0.984  0.972  98.78 % 
cs = 3  2596.04  2176.86  83.85 %  0.983  0.973  98.98 % 
co = 3  3844.64  3558.56  92.56 %  0.987  0.978  99.09 % 
co = 5 a  3183.75  3005.88  94.41 %  0.984  0.972  98.78 % 
co = 7  2408.24  1964.33  81.57 %  0.963  0.911  94.60 %  

a Base test. 
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management decisions but also influenced by various costs incurred 
during the process. Thus, retailers should not only focus on pricing and 
inventory strategies but also consider optimizing management costs, 
such as holding costs, shipping costs, and lost sales costs, to improve 
their profitability. 

With respect to future studies, first, while this paper has considered 
some factors within the context of omni-channel retailing, there are still 
several other factors that could be incorporated into the model. For 
example, positive lead time, substitution or competition effects between 
products or channels, and omni-channel retailers with more than two 
channels are all aspects that could be further considered in the model. 
Second, the parameters of the experiments are subjective, although they 
refer to previous literature and several data from a real supermarket to 
be more practical. It is more meaningful to test the algorithm in a real 
market with an omni-channel retailer in the future. Finally, although the 
design of the prediction idea is tested to be helpful, the choice of the 
prediction algorithm can be further discussed, and the performance may 

be improved by using other machine learning algorithms. 
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Appendix A 

In small-scale experiments, we conducted a linear regression analysis of demand data, resulting in significant linear regression equations for both 
online and offline demand in relation to price. The explanatory variable for linear regression is the unified price p, and separate linear regressions were 
conducted for offline demand doff and online demand don under several experiment settings. Using this as the model foundation, we employed value 
iteration to obtain approximate optimal strategies for dynamic pricing and inventory rationing under demand forecasting, as DF-VI algorithm. To 
obtain the demand data, we randomly selected prices within the price range and interacted with the market environment, observing the online and 
offline demand quantities corresponding to each price. Through 104 interactions, we obtained demand observation datasets under different demand 
scenarios for the purpose of fitting linear regression equations. We conducted linear regression analysis on the data using SPSS and selected the key 
indicators, which are summarized in the table below. The data in the Table A1 indicates the significance of the regression and the demand equations 
fitted for each experimental scenario are shown in Table A2. 

Table A1 
Linear regression results of each experiment.     

Unstandardized Coefficients Standardized Coefficients t-value p-value    

B Std. Error Beta 

Base test Online demand Constant  20.690  0.189 –  109.420  0.000** 
price  − 0.901  0.015 − 0.515  − 60.105  0.000** 

Offline demand Constant  20.343  0.191 –  106.468  0.000** 
price  − 0.868  0.015 − 0.497  − 57.304  0.000** 

E-1 Online demand Constant  24.395  0.067 –  363.130  0.000** 
price  − 1.200  0.005 − 0.914  − 225.384  0.000** 

Offline demand Constant  16.410  0.045 –  366.276  0.000** 
price  − 0.801  0.004 − 0.914  − 225.588  0.000** 

E-2 Online demand Constant  16.286  0.104 –  157.252  0.000** 
price  − 0.691  0.008 − 0.644  − 84.158  0.000** 

Offline demand Constant  20.361  0.128 –  159.436  0.000** 
price  − 0.999  0.010 − 0.703  − 98.912  0.000** 

E-3 Online demand Constant  24.165  0.157 –  154.243  0.000** 
price  − 1.029  0.012 − 0.638  − 82.902  0.000** 

Offline demand Constant  16.286  0.104 –  157.252  0.000** 
price  − 0.691  0.008 − 0.644  − 84.158  0.000** 

*p < 0.05 **p < 0.01. 

Table A2 
Demand functions in each experiment.   

Online demand Offline demand 

Base test don = 20.690 − 0.901*p doff = 20.343 − 0.868*p 
E-1 don = 24.395 − 1.2*p doff = 16.410 − 0.801*p 
E-2 don = 20.361 − 0.999*p doff = 20.422 − 1.001*p 
E-3 don = 24.165 − 1.029*p doff = 16.286 − 0.691*p  
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