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ABSTRACT

This paper presents a novel fractional-order model of a prey–predator system that incorporates group defense and prey refuge mechanisms,
along with Allee and fear effects. First, we examine the existence, uniqueness, non-negativity, and boundedness of the solution of the system.
Second, a comprehensive analysis is conducted on the existence, stability, and coexistence of equilibrium states in the system, which are crucial
for comprehending prey–predator system behavior. Our investigation reveals that the coexistence equilibrium undergoes a Hopf bifurcation
under five key parameters. Specifically, an increased threshold for the transition between group and individual behavior, influenced by differ-
ent strengths of the Allee effect, enhances the stability of both populations. This discovery sheds light on the role of group effects in shaping
prey–predator interactions and ecosystem stability. Third, system discretization is employed to explore the impact of step size on stimulating
stability and to investigate the Neimark–Sacker bifurcation, providing a more comprehensive understanding of system behavior. The role of
step size as a constraint on stability is examined, revealing the system’s progression from stability to chaos. Consequently, our results offer a
more flexible mechanism for adjusting the stability and dynamics of the two species. Finally, numerical simulations are utilized to validate the
reasonableness of the research findings.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0157354

This paper introduces a novel fractional-order prey–predator sys-
tem that includes group defense, prey refuge, Allee effect, and fear
effect and provides a more flexible scheme for regulating the two
species’ stable coexistence and dynamical mechanisms. It offers
valuable insights into the various factors influencing the sys-
tem’s dynamics. First, the strength of the Allee effect has diverse
impacts on the number, stability, and bifurcation of equilibrium
points. For instance, under the strong Allee effect, the system
manifests an extinction equilibrium, two prey-only equilibria,
and one coexistence equilibrium. As the strength of the Allee
effect increases, the area of initial density attracted to the locally
progressively stable extinction equilibrium also increases, thereby
posing a greater risk of extinction for both population systems.
However, as the Allee effect weakens, one of the moving bound-
ary equilibria vanishes, and the extinction equilibrium becomes a
saddle point. It is noteworthy that prey populations remain viable

irrespective of the initial density of the two populations. Second,
when Hopf bifurcation occurs at the coexistence equilibrium, an
appropriate reduction of the Allee effect, prey population mor-
tality, memory effect, or an increase of transition thresholds
between group and solidarity behavior, predator numbers, and
prey conservation effects can stabilize grouping and solitariness
in the two populations. The study emphasizes that increasing
thresholds for transitions between group grouping and solitary
behavior, memory effect, and reducing memory effects are crucial
for maintaining population equilibrium. Third, fractional-order
continuous systems pose challenges in numerical simulations;
thus, discrete systems are employed to comprehensively under-
stand the process from bifurcation to the emergence of singular
attractors. This paper discretizes the system and demonstrates
that equilibrium stability changes when step size thresholds are
exceeded, leading to more complex systems, such as generating

Chaos 33, 103113 (2023); doi: 10.1063/5.0157354 33, 103113-1

Published under an exclusive license by AIP Publishing

 12 O
ctober 2023 01:31:09

https://pubs.aip.org/aip/cha
https://doi.org/10.1063/5.0157354
https://doi.org/10.1063/5.0157354
https://pubs.aip.org/aip/cha/action/showCitFormats?type=show&doi=10.1063/5.0157354
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0157354&domain=pdf&date_stamp=2023-10-11
https://orcid.org/0000-0001-8555-7219
https://orcid.org/0000-0002-4313-8312
https://orcid.org/0000-0003-0386-7163
mailto:tanwenhui0@163.com
https://doi.org/10.1063/5.0157354


Chaos ARTICLE pubs.aip.org/aip/cha

chaos through Neimark–Sacker bifurcation. Selecting an appro-
priate step size is critical to facilitating species coexistence, and
adjusting the step size according to the fractional order is more
conducive to capturing the complexity of both populations. The
outcomes of this study have significant implications for compre-
hending prey–predator interactions and ecosystem stability.

I. INTRODUCTION

Prey–predator models have been extensively studied in the
fields of biology and mathematics1–3 since the seminal works of
Lotka4 and Volterra.5 Understanding the dynamics of prey–predator
interactions, including stability, persistence, periodic solutions, and
bifurcation, is crucial for maintaining the balance of ecosystems.6–8

A variety of functional response functions, such as Holling–Tanner,
ratio-dependent, and Beddington–DeAngelis types, have been pro-
posed to describe the interaction between predator and prey
populations.9–16 To better understand the intricate dynamics of
prey–predator interactions, applied mathematicians and theoreti-
cal ecologists have incorporated several ecological phenomena into
their models, including the Allee effect, the fear effect, the nonlocal
competition effect, and the environmental impact.17–28

In natural ecosystems, many species exhibit social behavior that
can influence the behavior of other members of their population.
For example, species, such as wildebeest, zebras, and buffalo, form
herds to search for food resources or defend against predators. This
herd behavior can provide a strong selective advantage, contribut-
ing to the long-term success of a population or ecosystem. Recently,
a prey–predator model has been studied in which the prey exhibits
herd behavior, and the predator interacts with the prey along the
outer corridor of the herd of prey. It has been suggested that the
response functions of prey that exhibit herd behavior should be
modeled in terms of the square root of the prey population.29–31 This
approach could improve the accuracy of prey–predator models that
take into account social behavior. Based on this fact, the authors
in Ref. 32 have proposed a prey–predator model described by the
following ordinary differential equations:





du

dt
= u(1 − u)−

√
uv,

dv

dt
= γ̃ v(−β̃ +

√
u),

where u(t) and v(t) stand for the prey and predator densities at time

t, respectively. β̃γ̃ is the death rate of the predator in the absence
of prey, and γ̃ is the conversion or consumption rate of prey to
predator.

It is essential to consider the size of the herd in the effective-
ness of herd behavior as a protective measure for prey populations
against predators. When the herd is too small, it may not be able
to provide an adequate group defense as the boundary of the herd
may consist of the total population, making it easier for predators
to attack. The authors in Ref. 33 studied a modified prey–predator
model incorporating herd behavior to address this. The model is

described as





du

dt
= ru

(
1 −

u

K

)
− a

u
√

u + h
v,

dv

dt
= −mv + ea

u
√

u + h
v,

where r is the intrinsic growth rates of the prey, K is the carrying
capacity of the prey, a is the maximum value of prey consumed by
per predator per unit time, h is a threshold for the transition between
herd grouping and solitary behavior, m is the death rate of the preda-
tor in the absence of prey, and e is the conversion or consumption
rate of prey to predator. This model provides a useful framework for
studying the dynamics of prey–predator interactions in the presence
of herd behavior.

For many years, the conventional view in ecology was that
predators only influence prey population sizes through direct pre-
dation. However, recent research has shown that predators can also
impact prey behavior and physiology, resulting in changes in prey
population dynamics.34,35 These indirect effects may be even more
significant than direct predation. Prey animals can display a range
of anti-predator responses, including changes in habitat use, for-
aging behavior, vigilance, and physiological changes. Incorporating
predator call playback into a prey–predator model, the authors in
Ref. 36 explored the impact of fear-induced changes in behavior
on prey–predator dynamics. They found that isolation can mitigate
the effects of direct predation, as prey animals become less vulner-
able when separated from other members of the population. These
findings underscore the complex interplay between social behavior,
prey–predator dynamics, and fear effects. Real-world experiments
have demonstrated that predation risk can have a significant impact
on wildlife populations, with some studies showing up to a 40%
decrease in sparrow offspring numbers due to fear-induced behav-
ioral changes. The authors in Ref. 37 found that the stability of the
positive equilibrium point changes from stable to unstable and then
back to stable with an increase in the fear effect. Currently, the sys-
tem can be in a stable state at very low or high levels of the fear effect,
with two nearby Hopf branches near the positive equilibrium point
for the fear coefficient.

It is known that the Allee effect, introduced by well known
ecologist W. C. Allee, is an important mechanism in ecology which
gives realistic description of interaction among species in ecosystem.
It refers to a positive relationship between the population density
and per capita growth rate of the population at small densities. In
recent years, intense focus has been given to studying these phenom-
ena on prey–predator models not only in ecology but also in other
disciplines.38–40 The Allee effect deals with the extinction scenario of
the species in which there is some critical density of the population,
called Allee threshold, which influences the extinction. Allee effects
can be classified into two types: strong Allee effect and weak Allee
effect. In the case of a strong Allee effect, the per capita growth rate
is negative below the Allee threshold and the growth rate becomes
positive above that threshold. In the case of a weak Allee effect, the
per capita growth rate is small but remains positive at low popula-
tion densities. Compared to a strong Allee effect, no critical density
is required for survival of the population in the case of a weak Allee
effect.41 The Allee effect can be induced by a variety of mechanisms,
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TABLE I. Biological significance description of parameters in system (1.2).

Parameter Meaning

u(t) Prey population density at time t
v(t) Predator population density at time t
m ∈ ( − 1, 1) Allee effect
k> 0 The level of fear effect

a> 0
The maximum value of prey consumed

by per predator per unit time

u(1 − e)
Amount of the prey available to the

predator

h ∈ (0, 1)
Threshold for the transition between
herd grouping and solitary behavior

b/a Conversion rate of the prey
d> 0 Death rate of the predator population

q, 1 ≥ q> 0
The order of fractional-order

differential equation of the system

including difficulties in finding suitable mating partners, reproduc-
tive facilitation and predation, social interaction, pollen scarcity and
anti-predator behavior, and environmental conditioning.42–45 The
Allee effect is a crucial mechanism in ecology that provides a real-
istic description of interactions among species in ecosystems. The
effect refers to the positive relationship between population den-
sity and per capita growth rate at low densities. Recent studies have
focused on applying the Allee effect to prey–predator models in
ecology and other disciplines. The effect is classified into two types:
strong Allee effect and weak Allee effect, depending on whether or
not a critical population density is needed for the population’s sur-
vival. Various mechanisms can induce the Allee effect, including
difficulties in finding suitable mating partners, reproductive facil-
itation, predation, social interaction, pollen scarcity, anti-predator
behavior, and environmental conditioning. The authors in Ref. 46
studied the dynamic behaviors of a fractional-order prey–predator
system incorporating the Allee effect, fear effect, and shelter effect.
They found that stable coexistence could be achieved by appropri-
ately increasing the fear level or refuge rate or reducing prey natality
or the fractional order of the system. Motivated by previous studies,
the following prey–predator system with Allee and fear effects in the
prey is put forward,





du

dt
=

u(1 − u)(u − m)

1 + kv
−

a(1 − e)uv√
u(1 − e)+ h

,

du

dt
=

b(1 − e)uv√
u(1 − e)+ h

− dv.

The meanings of all parameters of system (1.2) are presented in
Table I.

Over the past two decades, researchers have focused on inves-
tigating the dynamic behavior of fractional ecosystems, as fractional
calculus has the ability to represent the memory and genetic effects
of species in most ecosystems throughout their entire lifespan.47,48

The authors in Ref. 49 studied three species fractional food web
models within the framework of the improved Caputo–Fabrizio
operator, the system’s complexity was observed through simulations

of various fractional orders and initial values. Studies in this area
have explored the existence and uniqueness of system solutions,
stability of system equilibrium points, and Hopf bifurcation of sys-
tems, among other topics. Building on this previous research, this
study aims to investigate how Allee, fear, and refuge effects impact
the dynamics of the prey–predator system under the fractional
prey–predator system. To achieve this goal, the Caputo fractional
differential equation is employed to describe the memory effect of
the population, and a new prey–predator fractional system is pro-
posed, which incorporates Allee and fear effects with group defense
and prey refuge. The system can be expressed as follows:





du

dt
=
∫ t

t0
ν (t − t′)

(
u(1−u)(u−m)

1+kv
− a(1−e)v√

u(1−e)+h

)
dt′,

dv

dt
=
∫ t

t0
ν (t − t′)

(
b(1−e)uv√
u(1−e)+h

− dv

)
dt′,

(1.1)

where ν(t − t′) = 1
0(q−1)

(t − t′)q−2 and 0(x) denotes the gamma

function. The coefficient 1/0(q − 1) and exponent (q − 2) are
chosen to rewrite Eq. (1.1) in the form of fractional differential
equations with the Caputo-type derivative. By applying the Caputo
fractional derivative of (q − 1) on both sides and using the fact
that the Caputo fractional derivative and the fractional integral are
inverse operations, the following fractional differential equation can
be obtained:





C
0 D

q
t u(t) =

u(1 − u)(u − m)

1 + kv
−

a(1 − e)uv√
u(1 − e)+ h

,

C
0 D

q
t v(t) =

b(1 − e)uv√
u(1 − e)+ h

− dv.

(1.2)

The meanings of all parameters of system (1.2) are presented
in Table I.

Three main contributions are presented in this paper.

(1) This paper proposes a new fractional-order system containing
group defense, prey refuge, Allee and fear effects.

(2) Since multiple effects, especially the Allee, group, and memory
effects, have a significant impact on biological games, this paper
focuses on five critical parameters and the mechanism of the
memory effect on the stability of prey–predator and Hopf bifur-
cation. Extensive theoretical and numerical analyses show the
system’s equilibrium under different parameters.

(3) To reveal the effect of step length on prey–predator stability and
bifurcation, we explore the constraint of step length on equilib-
rium by discretizing system (1.2) while keeping the number of
equilibria constant and showing the process of the system from
stability to chaos. It provides a more flexible scheme for regulat-
ing the stable coexistence and dynamics of the two species and
provides valuable insights into the various factors that influence
the system’s dynamics.

This paper is organized as follows: Sec. II provides some
fractional-order theoretical knowledge for later use. Section III stud-
ies the existence of uniqueness, non-negativity, and boundedness
of the system in a fractional-order framework. Section IV investi-
gates the existence of equilibrium points of the system and integrates
the local and global stability of the equilibrium points of the system
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and Hopf bifurcation. Section V investigates the system’s stability
after discretization with Neimark–Sacker bifurcation. This study is
essential to assess the effect of discretization on the system’s sta-
bility. Section VI verifies the soundness of the obtained results by
numerical simulations. Finally, Sec. VII presents a short conclusion.

II. PRELIMINARIES

In this section, we discuss some crucial definitions, useful
lemmas, and theorems related to fractional calculus.

Definition 1 (Ref. 50): The Caputo fractional derivative with
order q ≥ 0 for the continuous function g(t) ∈ ACn([0, +∞), R) is
defined as

C
0 D

q
t g(t) =

1

0(n − q)

∫ t

0

g(n)(s)

(t − s)q−n+1
ds,

where q ∈ (n − 1, n) and n ∈ Z+,0(·) is the Gamma function.
In particular, when n = 1, i.e., 0 < q ≤ 1, the Caputo fractional

derivative with order q becomes

C
0 D

q
t g(t) =

1

0(1 − q)

∫ t

0

g(s)

(t − s)q
ds.

Definition 2 (Ref. 50): The Mittag–Leffler function El for
order l > 0 is defined as

El(z) :=
∞∑

j=0

zj

0(jl + 1)
, z ∈ C

as the sequence converges.
Lemma 1 (Ref. 51): For system

C
0 D

q
t X(t) = 9(t, X), t ≥ 0,

with initial condition X(0) = (x(0), y(0)), where 0 < q ≤ 1, 9 :
[0, ∞)×1 → Rn,1 ⊆ Rn, if9(t, X) fulfills the local Lipschitz con-
dition about X ∈ Rn,

‖9(t, X)−9(t, X̃)‖ ≤ M‖X − X̃‖,

then the system exists a unique solution on [0, ∞)×1,
and

∥∥X (x1, x2, . . . , xn)− X̃
(
x̃1, x̃2, . . . , x̃n

)∥∥ ≤
∑n

i=1

∣∣xi − x̃i

∣∣ , i = 1,
2, . . . , n, xi, x̃i ∈ R.

Theorem 1 (Ref. 52): The Laplace transform of C
0 D

q
t g(t) is

L
{

C
0 D

q
t g(t)

}
= sqF(s)−

n−1∑

i=0

sq−i−1gi(0),

where F(s) = L {g(t)}, q ∈ (n − 1, n) and n ∈ Z+.
Theorem 2 (Ref. 53): Assume q > 0, β > 0, and K ∈ C

n×n,
then

L
{
tβ−1Eq,β (Ktq)

}
=

sq−β

sq − K

for Re(s) > ‖K‖
1
q , where Re(s) is the real part of the complex number

s and Eq,β is the Mittag–Leffler function.

Theorem 3 (Ref. 54): For the following fractional-order
system:

C
0 D

q
t g(t) = h(g(t)), g(0) = g0 ∈ R

N, q ∈ (0, 1),

where g(t) = (g1(t), g2(t), . . . , gn(t))
T ∈ R

n and h :
[
h1, h2, . . . , hn

]
:

R
n → R

n. If h
(
g∗) = 0, then g∗ is an equilibrium point. Set J

(
g∗)

is the Jacobian matrix J = ∂h
∂g

= ∂(h1 ,h2 ,...,hn)
∂(g1 ,g2 ,...,gn)

for g = g∗. If the

characteristic values λi(i = 1, . . . , n) of J
(
g∗) meet

∣∣arg (λi)
∣∣ > qπ

2

(i = 1, . . . , n), then g∗ is locally asymptotically stable.
Definition 3 (Ref. 55): A fixed point (x, y) is called

(i) sink if |λ1| < 1 and |λ2| < 1, and it is locally asymptotically
stable;

(ii) source if |λ1| > 1 and |λ2| > 1, and it is locally unstable;
(iii) saddle if |λ1| > 1 and |λ2| < 1 or (|λ1| < 1 and |λ2| > 1); and
(iv) non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

Lemma 2 (Ref. 56): Let F(λ) = λ2 + Pλ+ Q, suppose that
F(1) > 0, λ1 and λ2 are two roots of F(λ) = 0, then

(i) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and Q < 1;
(ii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if and only if

F(−1) < 0;
(iii) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and Q > 1;
(iv) λ1 = −1 and |λ2| 6= 1 if and only if F(−1) = 0 and P 6= 0, 2; and
(v) λ1 and λ2 are complex and |λ1| = 1, |λ2| = 1 if and only if

P2 − 4Q < 0 and Q = 1.

III. ANALYSIS OF WELL-POSEDNESS OF THE SYSTEM

In this section, we examine the existence, uniqueness, non-
negativity, and boundedness of the solutions of system (1.2).

A. Existence and uniqueness of the solutions

Theorem 4: System (1.2) owns a unique solution X(t)
= (u(t), v(t)) ∈ � with initial condition (u(0), v(0)) ∈ �, ∀t ≥ 0.

Proof. First, we consider the time interval [0, t1] , t1 < +∞ and
the region as follows:

� = {(u, v) : max{|u|, |v| < η}},

where η is a positive real number and is a subset of R
2, and we

choose two points from the set, X0, X̃0 ∈ �. Two solutions of the
system C

0 DqX = F(X), starting from X0 and X̃0, are denoted by X(t)

and X̃(t), respectively. F(X) = (F1(X), F2(X)), where X = (u, v)T

and





F1(X) =
u(1 − u)(u − m)

1 + kv
−

a(1 − e)uv√
u(1 − e)+ h

,

F2(X) =
b(1 − e)uv√
u(1 − e)+ h

− dv.
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Now, we can write

‖F(X)− F(X̃)‖ =
∣∣F1(X)− F2(X̃)

∣∣+
∣∣F1(X)− F2(X̃)

∣∣

6 |u − ũ|
∣∣(1 + kη)+ η2

∣∣+ 2η(1 + m)|u − ũ| − m|u − ũ| + kmη|v − ṽ| +
1 − e

h
|v − ṽ|

∣∣∣aη
√

h + bη
√
η(1 − e)+ h

∣∣∣

6 |u − ũ|
∣∣(1 + kη)3η2 + 2η(1 + m)− m)

∣∣+ |v − ṽ|
∣∣∣∣kmη +

1 − e

h
(aη

√
h + bη

√
h(−e)+ h)

∣∣∣∣

6 L1|u − ũ| + L2|v − ṽ|

6 L‖X − X̃‖,

where L = max {L1, L2}, L1 = (1 + kη)3η2 + 2η(1 + m)− m), and
L2 = kmη + 1−e

h
(aη

√
h + bη

√
h(−e)+ h).

Hence, F(X) conforms to the condition of local Lipschitz, then
system (1.2) exists a unique solution by Lemma 1. �

B. Non-negativity and boundedness of the solutions

Theorem 5: All solutions of system (1.2) initiating from
(u(0), v(0)) ∈ R2 are non-negative and bounded in region W .

Proof. We aim to establish the non-negativity of solutions
u(t) that originate from W . In other words, we seek to prove that
u(t) ≥ 0 holds for all t ≥ t0. Assuming the contrary, there exists a
constant t1 > t0 such that t+1 > t1 is sufficiently close to t1, and the
following conditions hold:





u(t) > 0, t0 ≤ t ≤ t1,

u (t1) = 0,

u
(
t+1
)
< 0.

There are two possibilities:

1. If C
0 Dqu(t) ≥ 0 for all t ∈

[
t1, t

+
1

]
, according to Theorem 1 in

Ref. 51, it can be concluded that u(t) is a non-decreasing func-
tion for each t ∈

[
t1, t

+
1

]
. However, this contradicts the initial

assumption.
2. If C

0 Dqu(t) ≤ 0 for all t ∈
[
t1, t

+
1

]
, we have the inequality

C
0 D

q
t u(t) > u

(
(1 − u) (u − m)

1 + kη
−

a(1 − e)η√
u(1 − e)+ h

)

> u max

(
(1 − u) (u − m)

1 + kη
−

a(1 − e)η√
u(1 − e)+ h

)
.

Since u(t) is continuous, it attains a minimum value for all
t ∈

[
t1, t

+
1

]
. Let γ be the maximum value of (1−u)(u−m)

1+kη

− a(1−e)η√
u(1−e)+h

. Therefore, we have the inequality

C
0 Dqu(t) > u(t)γ .

By applying the Laplace transform to this inequality, we obtain

u(t) > u (t1)Eq

(
γ (t − t1)

q
)

, t ∈
[
t1, t

+
1

]
.

Thus, u(t) > 0 for any t > t1, which contradicts the assumption.
In the same manner, we have v(t) is non-negative.

To prove the boundedness of the solutions of system (1.2), we
consider:

U(t) = u(t)+
a

b
v(t).

Then, the Caputo fractional derivative of U(t) with order q is

C
0 D

q
t U(t) =

u(1 − u)(u − m)

1 + kv
− d (U(t)− u) .

Foe any d > 0, we have

C
0 D

q
t U(t)+ dU(t) =

u(1 − u)(u − m)

1 + kv
+ du

6 u(1 − u)(u − m)+ du

6 (d − m)u + (1 − m)u2

6 1 + d.

Applying Theorems 1 and 2, we obtain sqF(s)− sq−1U(0)+ dF(s)
6 1+d

s
, where F(s) = L{U(t)}, i.e.,

F(s) 6 U(0)
sq−1

sq + d
+

1 + d

s
(
sq + d

) .

Hence,

U(t) 6 U(0)Eq,1

{
−dtq

}
+ (1 + d)tqEq,q+1

{
−dtq

}
.

Considering the properties of the Mittag–Leffer function, we have

Eq,1

{
−dtq

}
=
(
−dtq

)
Eq,q+1

{
−dtq

}
+

1

F(1)
,

i.e., tqEq,q+1

{
−dtq

}
= −

1

d

(
Eq,1

{
−dtq

}
− 1

)
and

U(t) 6

(
U(0)−

1 + d

d

)
Eq,1

{
−dtq

}
+

1 + d

d
.

Due to the positiveness of the Mittag–Leffler function Eq,1 and taking
the limit t → ∞, we have

lim
t→∞

U(t) 6
1 + d

d
+ ε.

Thus, all solutions of system (1.2) are bounded in the region

W =
{
(u(t), v(t)) ∈ R2

+ | 0 6 u(t)+
a

b
v(t) 6

1 + d

d
+ ε, ε > 0

}
.

�
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IV. QUALITATIVE ANALYSIS

The main aim of this section is to examine the dynamic behav-
ior of system (1.2) by analyzing its equilibrium points. This inves-
tigation focuses on identifying the conditions for the existence and
coexistence of equilibrium points and establishing their local and
global asymptotic stability. The occurrence of bifurcation at these
equilibrium points is thoroughly explored, with particular attention
given to Hopf bifurcations induced by parameter variations. The
obtained results yield valuable insights into the long-term dynamics
of the system and its sensitivity to changes in key parameters.

A. Existence of equilibrium point of system (1.2)

Considering the biological significance of the system, we
assume that m ∈ (−1, 1), a, e, h, d ∈ (0, 1), b ∈ (a, 1), k ∈ R+, then
the analysis of the existence of the biological equilibria of system
(1.2) is as follows:

(1) There is always an extinction equilibrium E0(0, 0) and predator-
free equilibrium E2(1, 0) without any limits on parameters.

(2) When m ∈ (0, 1), which is a strong Allee effect constant,
there is a predator-free equilibrium E1(m, 0). Conversely, when
m ∈ (−1, 0), which is a weak Allee effect constant, then E1(m, 0)
does not exist.

(3) The coexistence equilibrium E3(u3, v3) exists and it is unique
when κ < 2b2(1 − e) and κ + 2b2(e − 1)m > 0 hold, and u3, v3

are the positive solutions of the following equations:





(1 − u)(u − m)

1 + kv
−

a(1 − e)v√
u(1 − e)+ h

= 0,

b(1 − e)u√
u(1 − e)+ h

− d = 0.

(4.3)

According to the second equation of (4.3), we obtain that
0 < u3 = −κ

2b2(−1+e)
< 1. v3 is a positive real root less than 1 of

the following quadratic equation:

A2v
2 + A1v + A0 = 0,

where

A2 = −4ab4(−1 + e)3,

A1 = −4akb4(−1 + e)3,

A0 =
(
2b2(e − 1)+ κ

)√
h +

κ

2b2

(
κ + 2b2(e − 1)m

)
,

κ = d(d +
√

d2 + 4b2h).

Since A2 > 0, A1 > 0, A0 must be less than 0 to obtain a positive
real number solution. In this case, if A2 + A1 + A0 > 0, then
otherwise there is a v ∈ (0, 1).
Overall, the coexistence equilibrium E3(u3, v3) exists in
S1 = {(a, b, d, e, h, k, m) ∈ R7

+| − 1 < m < −κ
2b2(e−1)

∩ A2 + A1

+ A0 > 0}.

B. Stability analysis of equilibrium

In this section, we analyze the stability of the equilibrium point.
First, we give the Jacobian matrix of system (1.2),

J =
(

J11 J12

J21 J22

)
,

where

J11 =
a(e − 1)(2h + u(1 − e))v

2(h + u − eu)
3
2

+
(2 − 3u)u + m(2u − 1)

1 + kv
,

J12 = u

(
a(e − 1)

√
h + u − eu

+
k(u − 1)(u − m)

(1 + kv)2

)
,

J21 = −
b(e − 1)(2h + u − eu)v

2(h + u − eu)
3
2

,

J22 = −d −
b(e − 1)u

√
h + u − eu

.

The stability of E0, E1, and E2 is shown by the following theorem.
Theorem 6:

(i) The extinction equilibrium E0 is locally asymptotically stable for
m ∈ [0, 1) and is a saddle point for m ∈ (−1, 0);

(ii) the one predator-free equilibrium point E1(m, 0) is locally unsta-

ble for bm(1 − e) ≥ d
√

h + m(1 − e) and is a saddle point for

bm(1 − e) < d
√

h + m(1 − e); and
(iii) the one prey-only equilibrium E2(1, 0) is locally asymptotically

stable for b(1 − e) < d
√

1 − e + h and is a saddle point for

b(1 − e) ≥ d
√

1 − e + h.
Proof. The Jacobian matrix at E0 is calculated as follows:

J(E0) =
(−m 0

0 −d

)
.

Obviously, the eigenvalues of J (E0) are λ1 = −m and λ2 = −d,
then

∣∣arg (λ1)
∣∣ = π >

qπ

2
for 0 ≤ m < 1 or

∣∣arg (λ1)
∣∣ = 0 <

qπ

2
for

−1 < m < 0; and
∣∣arg (λ2)

∣∣ = π >
qπ

2
. By applying Theorem 3,

the extinction equilibrium E0 is locally asymptotically stable for
0 ≤ m < 1 and saddle for −1 < m < 0.

It is worth noting that E1 is present when E0 is locally asymp-
totically stable.

The Jacobian matrix at E1 is

J(E1) =




m(1 − m) 0

0
bm(1−e)−d

√
h+m(1−e)

√
h+m−em


 .

Obviously λ1 = m(1 − m) > 0, λ2 = bm(1−e)−d
√

h+m(1−e)
√

h+m−em
is obtai-

ned, then
∣∣arg (λ2)

∣∣ = 0 <
qπ

2
for bm(1 − e) ≥ d

√
h + m(1 − e)

and
∣∣arg (λ2)

∣∣ = π >
qπ

2
for bm(1 − e) < d

√
h + m(1 − e). By

applying Theorem 3, the one predator-free equilibrium point E1 is

locally unstable for bm(1 − e) ≥ d
√

h + m(1 − e) and is a saddle

point for bm(1 − e) < d
√

h + m(1 − e).
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The Jacobian matrix at E2 is

J(E2) =
(

b(1−e)

d
√

1−e+h
0

0 m − 1

)
.

The eigenvalues λ1 = b(1−e)

d
√

1−e+h
, and λ2 = m − 1 < 0 are obtained,

and
∣∣arg (λ2)

∣∣ = π >
qπ

2
. By simple calculation,

∣∣arg (λ1)
∣∣ = π

>
qπ

2
for b(1 − e) < d

√
1 − e + h and

∣∣arg (λ2)
∣∣ = 0 <

qπ

2
for

b(1 − e) ≥ d
√

1 − e + h. Therefore, one prey-only equilibrium E2

is locally asymptotically stable for b(1 − e) < d
√

1 − e + h and is a

saddle point for b(1 − e) ≥ d
√

1 − e + h. �

Theorem 7: Suppose A2 + A1 + A0 > 0, −1 < m < −κ
2b2(e−1)

< 0, and u3 > m hold, then the coexistence equilibrium E3 is locally
asymptotically stable if one of the following criteria holds:

(i) A12 + A13 > 0, m ∈ (−1, m0),
(ii) A12 + A13 > 0, m ∈ (m0, 1) and T2 − 4D < 0, 0 < q < q∗,
(iii) A12 + A13 < 0, m ∈ (0, m0), and
(iv) A12 + A13 < 0, m ∈ (m0, 1) and T2 − 4D < 0, 0 < q < q∗,

where

m0 = −
√

2a(e − 1)2v(kv + 1)
(
κ + 2hb2

) 3
2

−
κ

b2(e − 1)
− 1.

Proof. Assuming u3 > m, we can obtain the Jacobian matrix of
system (1.2) at E3 as follows:

J (E3) =
(

J11 (E3) J12 (E3)

J21 (E3) J22 (E3)

)
, (4.4)

where

J11 (E3) =
a(e − 1)2u3v3

2(h + u3 − eu3)
3
2

+
(1 + m − 2u3)u3

1 + kv3

,

J12 (E3) = u3

(
a(e − 1)

√
h + u3 − eu3

+
k(u3 − 1)(u3 − m)

(1 + kv3)
2

)
,

J21 (E3) = −
b(e − 1)(2h + u3 − eu3)v3

2(h + u3 − eu3)
3
2

,

J22 (E3) = 0.

The corresponding characteristic equation for J(E3) is λ2 − Tλ+ D = 0, and the two eigenvalues satisfy λ1λ2 = −J12J21 > 0, λ1

+ λ2 = T,

T = Tr (J (E3)) = J11 (E3)+ J22 (E3) =
a(e − 1)2u3v3

2(h + u3 − eu3)
3
2

+
(1 + m − 2u3)u3

1 + kv3

,

D = Tr (J (E3)) = J11 (E3) J22 (E3)− J12 (E3) J21 (E3) = p2v
3
3 + 2kp2v3 + p1,

p2 =
ab(e − 1)2k2u(2h + u − eu)

2(kv + 1)2(−eu + h + u)2
,

p1 =
b(e − 1)u((e − 1)u − 2h)

(
hk(u − 1)(m − u)− (e − 1)

(
a
√

−eu + h + u + k(u − 1)u(m − u)
))

2(kv + 1)2(h + u − eu)5/2
.

Applying Theorem 3, if T < 0, then λ1 and λ2 are
non-negative real roots, i.e.,

∣∣arg
(
λ1,2

)∣∣ = π >
qπ

2
; if T = 0, then

the two eigenvalues are pure imaginary roots that meet
∣∣arg

(
λ1,2

)∣∣
= π

2
>

qπ

2
. In this case, E3 is locally asymptotically stable. If

T > 0 and T2 − 4D < 0 hold, then the two eigenvalues are a
pair of complex conjugate roots with positive real parts: λ1,2 = T

2

±
√

4D−T2i

2
, by calculating

∣∣arg
(
λ1,2

)∣∣ = tan−1

√
4D−T2

T
to obtain

q = q∗. In this case, if tan−1

√
4D−T2

T
>

qπ

2
, i.e., 0 < q < q∗

holds, E3 is locally asymptotically stable. Since a(e − 1)2v(kv + 1)

+ 2(m − 2u + 1)(u + h + u − e)3/2 > 0 determines the positive
and negative aspects of T, we combine like terms with the Allee effect
m as the variable to obtain

f1 = A11m + A12 + A13,

where A11 = (κ+2hb2)
3
2√

2
> 0, A12 =

( κ
b2 +2h)

3
2 (κ+b2(e−1))

√
2b2(e−1)

< 0, A13

= a(e − 1)2v(kv + 1) > 0. Thus, the zero m0 of f1 is influenced by
A12 + A13 positive and negative.

When A12 + A13 > 0, m0 < 0 and f2 = m0 + 1 = B11v
2

+ B12v + B13, where B11 = −
√

2a(e−1)2k

(κ+2hb2)
3
2
< 0, B12 = −

√
2a(e−1)2

(κ+2hb2)
3
2
< 0,

B13 = − κ

b2(e−1)
> 0. Since v ∈ (0, 1), the axis of symmetry of

f2 is negative, so m0 ∈ (−1, 0). When A12 + A13 < 0, m0 > 0
and f3 = m0 − 1 = B11v

2 + B12v + C0, so for B11 + B12 + B13 > 0,
m0 ∈ (0, 1) where C0 = − κ

b2(e−1)
− 2 < 0.

Overall, E3 is locally asymptotically stable when (i), (ii), (iii),
and (iv) are satisfied. �

Theorem 8: The coexistence equilibrium E3 (u3, v3) is globally
asymptotically stable if η1 < 0, η2 < 0, and η3 < 0 hold, where η1

= η − m, η2 = a(1−e)η√
(1−e)η+h

, η3 = u3(1 − η)(η − m).
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TABLE II. Equilibrium point stability type for system (1.2).

E0 E1 E2 E3

m ∈ ( − 1, 0), Saddle points No existence LAS No existence (see Fig. 1), κ ≥ 2b2(e − 1)
Saddle points Nodes (see Fig. 2), A12 + A13> 0, m ∈ ( − 1, m0) or A12 + A13< 0

Stable focus (see Fig. 3),
A12 + A13 > 0, m ∈ (m0, 0), T

2 − 4D < 0, 0 < q < q∗

Unstable focus (see Fig. 4), A12 + A13 > 0, m ∈ (m0, 0),
T2 − 4D < 0, q∗ < q < 1

m ∈ (0, 1), LAS Saddle points Saddle points Nodes (see Fig. 5), A12 + A13< 0, m ∈ (0, m0)
Stable focus (see Fig. 6), A12 + A13 > 0, T2 − 4D < 0, tan−1 0 < q < q∗

Source (see Fig. 7), T2 − 4 D> 0, A12 + A13< 0, m ∈ (m0, 1)
or A12 + A13> 0

Unstable focus (see Fig. 8),
A12 + A13 < 0, m ∈ (m0, 1), T

2 − 4D < 0, q∗ < q < 1,
or A12 + A13 > 0, T2 − 4D < 0, q∗ < q < 1

LAS No existence (see Fig. 9), κ ≥ 2b2(e − 1)

Proof. Construct the function as follows:

V(t) = V(u, v) =
(

u − u3 − u3 ln
u

u3

)
+

a

b

(
v − v3 − v3 ln

v

v3

)
.

By calculating the q order derivative of V(u, v) along with the
solution, we have

C
0 D

q
t V(t) ≤

u − u3

u
· CD

q
t u +

a(v − v3)

bv
· CD

q
t v

= (u − u3)

(
(1 − u)(u − m)

1 + kv
−

a(1 − e)v√
u(1 − e)+ h

)

+ (v − v3)

(
a(1 − e)u√
u(1 − e)+ h

− d

)

≤ u (η − m)+
a(1 − e)ηv√
(1 − e)η + h

+ u3(1 − η)(η − m)
.= uη1 + vη2 + η3,

where max{|u|, |v|} ≤ η. If η1 < 0, η2 < 0, and η3 < 0 hold, then
C
0 D

q
t V(t) ≤ 0, i.e., V(t) is a Lyapunov function. Therefore, the

coexistence equilibrium E3 (u3, v3) is globally asymptotically
stable. �

We provide the existence and stability of all equilibrium points
of system (1.2), as shown in Table II (locally asymptotically stable
for LAS for brevity).

Remark 1: The current section aims to investigate the stabil-
ity properties of the equilibrium points of system (1.2), which can be
categorized as the strong Allee effect, the weak Allee effect, and no
Allee effect, based on the value of parameter m. Specifically, when
m ∈ (0, 1), system (1.2) exhibits a strong Allee effect, resulting in the
local asymptotic stability of E0 and the saddle point or local instability
of E1. Conversely, when m = 0, no Allee effect is observed, causing E0

and E1 to collide and coincide at E0 while maintaining the stability of

E0. With the weak Allee effect, with m ∈ (−1, 0), E1 disappears, and
E0 becomes a saddle point. Furthermore, the presence of E3 affects
the stability of E2, where E2 is a saddle point if E3 exists but locally
asymptotically stable if E3 does not exist. Table II summarizes the
relationships between the equilibrium points and their correspond-
ing stability properties. It is worth noting that in Figs. 2 and 3, the
appearance of E3 leads to its global asymptotic stability.

Remark 2: According to the theorems presented in this study,
the dynamics of a predator–prey system are influenced by the strength
of the Allee effect exhibited by the prey population. In the case of weak
Allee effects, the system can exhibit three distinct scenarios regard-
less of the initial densities of both populations. If both populations
converge toward E2, the predator population faces extinction, as
depicted in Fig. 1. Conversely, if the coexisting equilibrium point E3

is globally asymptotically stable, as illustrated in Figs. 2 and 3, the
populations tend to coexist. Finally, when a stable limit cycle near E3

exists, as shown in Fig. 4, all initial density orbits converge toward this
limit cycle.

However, in the case of strong Allee effects exhibited by the
prey population, a low initial density of the prey population leads to
its attraction toward the basin of attraction of E0. This ultimately
results in the extinction of the predators and the prey population,
with the emergence of the extinction equilibrium point E1. The stable
manifold of E1 acts as a dividing line, separating the first quadrant
into two distinct regions, the attraction zone of E0, and the stable
path of E2 (see Figs. 5–9). In the presence of a coexisting equilibrium
E3, three main situations arise. If the coexistence equilibrium E3 is
locally stable, predators in the second region are subject to the Allee
effect, causing them to move toward coexistence when they are about
to become extinct (see Figs. 5 and 6). Regardless of the initial sizes
of the two populations, the system eventually leads to the extinction
of both populations (see Fig. 7). Alternatively, the two populations
may be attracted to a stable limit cycle near the coexisting equilibrium
E3 (see Fig. 8). Conversely, when coexistence equilibrium E3 does not
exist, the isotropic line of E1 splits the first quadrant into two regions,
where either the two populations become extinct or the predator per-
ishes and the prey flourishes (see Fig. 9). The above findings have
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FIG. 1. (a) and (b) are the phase diagram and solution curves of system (1.2) with initial values (0.001, 0.5) in blue, (0.001, 0.001) in rose red, (0.4, 0.5) in black, (0.6, 0.5)
in green, and (1, 0.4) in red, respectively.

significant implications for ecological conservation efforts,
particularly in populations exhibiting the Allee effect.

C. Bifurcation analysis

We choose the prey with Allee effect m, the death rate of the
prey population b, the death rate of the predator population d,

prey protection effect e, threshold for the transition between herd
grouping and solitary behavior h, and the fractional order q as bifur-
cation parameters to investigate the bifurcation of system (1.2) at the
coexistence equilibrium.

Theorem 9: Assuming J11 > 0 and T2 − 4D < 0, system (1.2)
experiences a Hopf bifurcation near E3 at m = m∗ and a stable limit
cycle around E3, where

FIG. 2. (a) and (b) are the phase diagram and solution curves of system (1.2) with initial values (0.001, 0.3) in blue, (0.2, 0.5) in green, and (1, 0.4) in black, respectively.
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(√
4D−T2

T

)∣∣∣∣
m=m∗

= tan
qπ

2
and d

dm

(√
4D−T2

T

)∣∣∣∣
m=m∗

6= 0.

Proof. When J11 > 0 and 4D − T2 > 0 meet, the Jacobian
matrix J (E3) has a couple of conjugate complex solutions λ1,2 = T

2

±
√

4D−T2

2
i, and

∣∣arg
(
λ1,2

)∣∣ = tan−1

√
4D−T2

T
. If

(√
4D−T2

T

)∣∣∣∣
m=m∗

= tan
qπ

2
meets, then

∣∣arg
(
λ1,2

)∣∣
m=m∗ = qπ

2
. If d

dm

(√
4D−T2

T

)∣∣∣∣
m=m∗

6= 0 meets, then

d

dm

∣∣arg
(
λ1,2

)∣∣
m=m∗ =

T2

T2 − 4D

d

dm

(√
4D − T2

T

)∣∣∣∣∣
m=m∗

6= 0.

The singularity condition requires that the real part of the eigenval-
ues associated with the Hopf bifurcation be greater than zero. The
section condition requires that the derivative of the mode of the
eigenvalues with respect to the bifurcation parameter is nonzero.
Together, these conditions ensure that a stable limit cycle emerges
around E3 as parameter m varies.

Overall, in addition to the conditions for the Hopf bifurca-
tion, if the singularity and cross-section conditions of the Hopf
bifurcation are also satisfied, then model (1.2) experiences a Hopf
bifurcation around E3 at m = m∗.

Note that we can use the same method to analyze the bifurca-
tion of the system at b, d, e, h, respectively. �

Theorem 10: Suppose J11 > 0 and T2 − 4D < 0, then system
(1.2) experiences a Hopf bifurcation around E3 at q = q∗, where q∗

= 2
π

tan−1

(√
4D−T2

T

)
.

Proof. Under the conditions J11 > 0 and T2 − 4D < 0, the
Jacobian matrix J(E3) has a pair of conjugate complex eigenvalues

λ1,2 = T
2

±
√

4D−T2

2
i. To check if the conditions for Hopf bifurcation

are met, we define

ψ1,2(q) =
qπ

2
−
∣∣arg

(
λ1,2

)∣∣

and evaluate them at q = q∗, where q∗ is given by tan
q∗π

2
=

√
4D−T2

T
.

If ψ1,2(q
∗) = 0 and

dψ1,2

dq
(q∗) 6= 0, then the conditions for Hopf

bifurcation are satisfied, and system (1.2) experiences a Hopf bifur-
cation around E3 at q = q∗. �

Remark 3: The equilibrium analysis presented in Table II
demonstrates the clear influence of the strength of the Allee effect
on the existence and stability of equilibrium points. In the case of
weak Allee effects, E0 and E2, are found to be saddle points, while
E3 is unstable, leading to the emergence of a limit cycle around it.
All system solutions are observed to approach this limit cycle from
their initial points. Without the Allee effect, E0 is locally stable, while
E2 and E3 remain unaffected, and the limit cycle expands consider-
ably. On the other hand, for strong Allee effects, the stability of E0,
E2, and E3 remains unchanged, and a new saddle point, E1, appears.
As a result, the soliton starting from (1, 0.6) enters E1 and reaches E0

instead of being attracted to the limit cycle. However, the solution tra-
jectory originating from the right neighborhood of E1 approaches the
limit cycle through E2 (see Fig. 10).

Remark 4: System (1.2) exhibits a Hopf bifurcation around
equilibrium point E3, depending on the strength of the Allee effect, as
parameterized by b. The system exhibits distinct Hopf bifurcations for
different levels of the Allee effect, as illustrated in Figs. 11 and 12. For
weak Allee effects, the system’s behavior is akin to the m bifurcation

FIG. 3. (a) and (b) are the phase diagram and solution curves of system (1.2) with initial values (0.001, 0.36) in blue, (0.001, 0.001) in rose red, (0.2, 0.7) in green, and
(1, 0.4) in black, respectively.

Chaos 33, 103113 (2023); doi: 10.1063/5.0157354 33, 103113-10

Published under an exclusive license by AIP Publishing

 12 O
ctober 2023 01:31:09

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 4. (a) and (b) are the phase diagram and solution curves of system (1.2) with initial values (0.001, 0.6) in blue, (0.001, 0.001) in rose red, (0.338, 0.637) in green, and
(1, 0.4) in black, respectively.

parameter [see Figs. 11(a) and 11(b)]. In contrast, under strong Allee
effects, the equilibrium point E3 becomes an unstable focus, and a sta-
ble limit cycle forms around it, while E0 becomes locally stable, and
E1 and E2 transform into saddle points (see Fig. 12). As b increases,
the system trajectory evolves from being attracted to the limit cycle

to redirecting toward E1 and eventually reaching E0 from the initial
point (1,0.6). This process results in an increase in the limit cycle’s size.
Moreover, the solution orbit from the right neighbor of E1 approaches
the limit cycle via E2. It is worth noting that a similar trend is observed
for the parameters d, e, and h.

FIG. 5. (a) and (b) are the phase diagram and solution curves of system (1.2) with initial values (0.001, 0.6) in blue, (0.6, 0.001) in lime green, (0.601, 0.001) in green,
(0.75, 0.1) in rose red, (0.9, 0.1) in black, (1, 0.08) in lime green, (1, 0.05) in red, and (0.76, 0.1) in dashed line, respectively.
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FIG. 6. (a) and (b) are the phase diagram and solution curves of system (1.2) with initial values (0.001, 0.6) in blue, (0.1, 0.4) in black, (0.15, 0.4) in red, (0.04, 0.001) in
green, (0.041, 0.001) in rose red, (1, 0.3) in lime green, and (0.17, 0.4) in dashed line, respectively.

Remark 5: The equilibrium point E3 in system (1.2) undergoes
a Hopf bifurcation, which is determined by parameter q, as shown in
Figs. 22 and 23. The impact of Allee effects on the bifurcation and
phase diagrams is evident. Notably, the emergence of a limit cycle
is associated with the bifurcation at q → 1, and its size increases

as q → 1. Conversely, the system stabilizes as q → 0. Clearly, when
q = 1, it can be analyzed using the classical theory of Hopf bifurcation
in integer-order differential equations. Consequently, it is possible to
eliminate the limit cycle by reducing the order of the fractional-order
system, thereby increasing its stability. If the initial densities of the

FIG. 7. (a) and (b) are the phase diagram and solution curves of system (1.2) with initial values (0.001, 0.6) in blue, (0.3, 0.001) in black, (0.301, 0.001) in green, (0.42, 0.13)
in rose red, (0.47, 0.153) in green, (1,0.2) in lime green, and (0.47, 0.153) in dashed line, respectively.

Chaos 33, 103113 (2023); doi: 10.1063/5.0157354 33, 103113-12

Published under an exclusive license by AIP Publishing

 12 O
ctober 2023 01:31:09

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 8. (a) and (b) are the phase diagram and solution curves of system (1.2) with initial values (0.001, 0.6) in blue, (0.3, 0.001) in green, (0.4, 0.15) in rose red, (0.6, 0.4)
in black, (0.655, 0.197) in red, (1, 0.1791) in lime green, and (0.3, 0.09) in dashed line, respectively.

two species in system (1.2) do not fall within the attraction domain
of the extinction equilibrium point and the system has a coexistence
equilibrium, the limit cycle can be eliminated. This finding highlights
the superior stability of the fractional-order system compared to the
integer-order system.

V. SYSTEM (1.2) DISCRETE ANALYSIS

To discretize system (1.2), we will employ the method
described in Ref. 57. Specifically, we will utilize a piecewise constant
argument in our discretization. The expression gives the resulting

FIG. 9. (a) and (b) are the phase diagram and solution curves of system (1.2) with initial values (0.001, 0.6) in blue, (0.3, 0.001) in green, (0.301, 0.001) in lime green,
(0.42, 0.3) in black, (0.485, 0.3) in lime green, (0.6, 0.3) in rose red, (1, 0.2) in rose red, and (0.4, 0.3) in dashed line, respectively.
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FIG. 10. (a) and (b) are bifurcation dia-
grams with parameter m for q = 0.98; (c)
and (d) are the phase diagram and solu-
tion curves of system (1.2) with initial
value (0.001, 0.6) in green and m = −0.15,
respectively. (e) and (f) are the phase diagram
and solution curves of system (1.2) with ini-
tial values (0.001, 0.6) in blue, and (1, 0.6)
in green and m = 0, respectively; (g) and (h)
are the phase diagram and solution curves
of system (1.2) with initial values (0.001, 0.6)
in blue, (0.051, 0.001) in red, and (1, 0.6) in
green and m = 0.05, respectively.
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FIG. 11. (a) and (b) are bifurcation diagrams with parameter b for m = −0.3, q = 0.98; (c) and (d) are the phase diagram and solution curves of system (1.2) with initial
value (0.001, 0.6) in blue, and (1, 0.6) in green and b = 0.6,m = −0.3, respectively.

discretized system,

un+1 = un +
ς q

0(1 + q)

(
−

a(1 − e)unvn√
h + (1 − e)u

+
(1 − un)un(−m + un)

1 + kvn

)
,

(5.5)

vn+1 = vn +
ς q

0(1 + q)

(
−dvn +

b(1 − e)unvn√
h + (1 − e)un

)
,

which represents a numerical approximation of the original sys-
tem (1.2). It is worth noting that discretization is a widely used
technique to approximate the dynamics of continuous systems.
In the case of non-integer order systems such as (1.2), piecewise

constant approximation is an effective method for approximating
non-integer order derivatives. The resulting discrete system can be
solved numerically through a variety of methods, such as finite dif-
ference or Runge–Kutta techniques, to yield numerical solutions.
Thus, discretization is a crucial step in the analysis of the behavior
of the system.

Despite the approximation process, which involves convert-
ing continuous systems into discrete ones, the equilibrium point
of the system remains unchanged. This study focuses on two
primary investigations related to the discretized system. First, we
examine the effect of the step size, a critical parameter in the dis-
cretization process, on the stability of the system. Second, we explore
the potential emergence of increased complexity in the dynamic
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FIG. 12. (a) and (b) are bifurcation diagrams with parameter b for m = 0.04, q = 0.98; (c) and (d) are the phase diagram and solution curves of system (1.2) with initial
values (0.001, 0.6) in blue, (1, 0.6) in green, (0.041,0.001) in rose red and b = 0.5,m = 0.04, respectively; (e) and (h) are the phase diagram and solution curves of system
(1.2) with initial values (0.001, 0.6) in blue, (1, 0.6) in green, and (0.041, 0.001) in rose red and b = 0.6,m = 0.04, respectively.
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FIG. 13. (a) is a graph of the densities of ς and q; (b) is the surface map of E0 for λ1 = −1.

behavior of the discretized system. These inquiries are essential for
understanding the implications of discretization and can signifi-
cantly impact the design and analysis of discrete systems.

A. Stability analysis of equilibrium

The Jacobian matrix of system (5.5) is

M =




1 +
ς q

0(1 + q)

(
a(e − 1)(2h + u − eu)v

2(h + u − eu)
3
2

+
(2 − 3u)u + m(2u − 1)

1 + kv

)
ς q

0(1 + q)




ua(e − 1)

√
h + u − eu +

k(u − 1)(u − m)

(1 + kv)2




−
ς q

0(1 + q)

(
b(e − 1)(2h + u − eu)v

2(h + u − eu)
3
2

)
1 +

ς q

0(1 + q)

(
−d −

b(e − 1)u
√

h + u − eu

)




. (5.6)

The stability of a fixed point is determined by checking whether
the eigenvalues of the Jacobian matrix lie within the unit circle.

Theorem 11:
(i) E0 is locally stable at �01, locally unstable at �02 and a saddle

point at�03;
(ii) E1 is locally stable at �11, locally unstable at �12 and a saddle

point at�13;
(iii) E2 is locally stable at �21, locally unstable at �22 and a saddle

point at�23; and
(iv) if |TrM3| − 1 < DetM3 < 1, E3 is locally asymptotically stable; if

|TrM3| − 1 < DetM3 and DetM3 > 1, E3 is locally unstable; and
if |TrM3| − 1 > DetM3, E3 is a saddle point.
Proof. The Jacobian matrix of the system at E0 is

M0 =
(

1 − mςq

0(1+q)
0

0 1 − dςq

0(1+q)

)
,

with eigenvalues λ1 = 1 − ςqm
0(1+q)

and λ2 = 1 − dςq

0(1+q)
. If m is a weak

Allee effect, then λ1 > 1; m has no Allee effect, then λ1 = 1; m is
a strong Allee effect, then λ1 < 1. Thus, −1 < λ1 < 1 holds when
m ∈ (0, 2ς−q0(1 + q)) is satisfied. Conversely, we obtain λ1 < −1
for m ∈ (2ς−q0(1 + q), 1). Since 0 < d < 1 is consistent with the
strong Allee of m, the discussion will not be repeated here. Thus, for
the stability analysis at E0, the following conclusions are obtained,
where3 = ς−q0(1 + q):

(1) E0 is locally asymptotically stable in �01 = {(m, d, ς , q)
∈ R+|m ∈ (0, 23) ∩ d ∈ (0, 23)};

(2) E0 is locally unstable in �02 = {(m, d, ς , q) ∈ R+|{m ∈ (23, 1)
∪ m ∈ (−1, 0)} ∩ d ∈ (23, 1)}; and

(3) E0 is a saddle point in �03 = {(m, d, ς , q) ∈ R+|{m ∈ (23, 1) or
m ∈ (−1, 0)} ∩ d ∈ (0, 23)} ∪ {(m, d, ς , q) ∈ R+|m ∈ (0, 23)
∩ d ∈ (23, 1)}.
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FIG. 14. Three-dimensional bifurcation diagram at bifurcation parameter ς .

The Jacobian matrix of the system at E1 is

M1 =




1 +
ς qm(m − 1)

0(1 + q)

a(−1 + e)ς qm
√

h + m − em0(1 + q)

0 1 +
ς q

0(1 + q)

(
−d −

b(−1 + e)m
√

h + m − em

)


,

with eigenvalues λ1 = 1 + ςqm(m−1)
0(1+q)

and 1 + ςq

0(1+q)

(
−d − b(−1+e)m√

h+m−em

)
.

Due to the existence of E1, −1 < λ1 < 1 holds for −23
< m(m − 1). Similarly, −1 < λ2 < 1 holds for −23 < b(1−e)m√

h+m(1−e)

< 0. The following conclusions are drawn for the stability case
of E1:

(1) E1 is locally asymptotically stable in �11 = {(m, d, ς , q, b, e, h)

∈ R+|m(1 − m) ∈ (0, 23) ∩ d ∈ ( b(1−e)m√
h+m(1−e)

, 23)};
(2) E1 is locally unstable in �12 = {(m, d, ς , q, b, e, h) ∈ R+

|m(1 − m) ∈ (23, 1) ∩ {d ∈ (0, b(1−e)m√
h+m(1−e)

) or d ∈ (23, 1)}}; and

(3) E1 is a saddle point in �13 = {(m, d, ς , q, b, e, h) ∈ R+

|{m(1 − m) ∈ (0, 23) ∩ {d ∈ (0, b(1−e)m√
h+m(1−e)

) ∪ d ∈ (23, 1)}} or

{d ∈ ( b(1−e)m√
h+m(1−e)

, 23) ∩ m(1 − m) ∈ (23, 1)}}.

The Jacobian matrix of the system at E2 is

M2 =




1 +
ς q(−1 + m)

0(1 + q)

ς q

0(1 + q)
(

a(−1 + e)
√

1 − e + h
)

0 1 +
ς q

0(1 + q)

(
−d −

b(−1 + e)
√

1 − e + h

)


,

with eigenvalues λ1 = 1 + ςq(−1+m)
0(1+q)

and λ2 = 1 + ςq

0(1+q)(
−d − b(−1+e)√

1−e+h

)
. Since m ∈ (−1, 1), i.e., λ1 < 1 holds, if 1 − 23

∈ (−1, 1), −1 < λ1 < 1 holds for m ∈ (−1, 1 − 23). Conversely,
λ1 < −1 holds for m ∈ (−1, 1 − 23). If 1 < 3, then obtains
−1 < λ1 < 1 at m ∈ (−1, 1). Similarly, −1 < λ2 < 1 holds when

−23 < −d + b(1−e)√
1−e+h

< 0. Conversely when −d + b(1−e)√
1−e+h

> 0 or

− d + b(1−e)√
1−e+h

< −3 is satisfied, we obtain |λ2| > 1. The following

conclusions are drawn for the stability case of E2:

FIG. 15. (a) is the time series corresponding to Fig. 26(i), with initial points (0.49, 0.3) in blue and (0.5, 0.3) in red; (b) is the time series corresponding to Fig. 27(l), with
initial points (0.4, 0.41) in blue, and (0.4, 0.4) in red.
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FIG. 16. (a) and (b) are bifurcation diagrams with parameter d for m = −0.3, q = 0.98; (c) and (d) are the phase diagram and solution curves of system (1.2) with initial
value (0.001,0.6), (1,0.6), and d = 0.2,m = −0.3, respectively.

(1) E2 is locally asymptotically stable in �11 = {(m, d, ς , q, b, e, h)

∈ R+|3 ∈ (0, d
2

− b(1−e)

2
√

1−e+h
) ∩ m ∈ (−1, 1 − 23)};

(2) E2 is locally unstable in �12 = {(m, d, ς , q, b, e, h) ∈ R+|3
> 1

2
or d

2
− b(1−e)

2
√

1−e+h
< 0 ∪ {3 ∈ (0, 1

2
) ∩ m ∈ (−1, 1 − 23)}

or {3 ∈ ( d
2

− b(1−e)

2
√

1−e+h
, 1

2
) ∩ m ∈ (1 − 23, 1)}}; and

(3) E2 is a saddle point in �13 = {(m, d, ς , q, b, e, h) ∈ R+

|{3 ∈ ( d
2

− b(1−e)

2
√

1−e+h
, 1

2
) ∩ m ∈ (−1, 1 − 23)} or {3 ∈ (0, 1

2
) ∩ d

2

− b(1−e)

2
√

1−e+h
< 0 ∩ m ∈ (1 − 23, 1)} or {3∈ (0, d

2
− b(1−e)

2
√

1−e+h
)∩ m

∈ (1 − 23, 1)}}.

The Jacobian matrix of the system at E3 is

M3 =
(

M11 M12

M2 M22

)
, (5.7)
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FIG. 17. (a) and (b) are bifurcation diagrams with parameter d for m = 0.04, q = 0.98; (c) and (d) are the phase diagram and solution curves of system (1.2) with initial
values (0.001, 0.6) in blue, (1, 0.6) in green, (0.041, 0.001) in red and d = 0.2,m = 0.04, respectively; (e) and (f) are the phase diagram and solution curves of system
(1.2) with initial values (0.001, 0.6) in blue, (1, 0.6) in green, and (0.04, 0.001) in red and d = 0.25,m = 0.04, respectively.
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FIG. 18. (a) and (b) are bifurcation diagrams with parameter e for m = −0.05, q = 0.98; (c) and (d) are the phase diagram and solution curves of system (1.2) with initial
value (0.001, 0.6) in blue, and (1, 0.6) in green and e = 0,m = −0.05, respectively.

where

M11 = 1 +
ς qa(−1 + e)2u3v3

2(h + u3 − eu3)
3/2

+
(1 + m − 2u3)u3

1 + kv30(1 + q)
,

M12 = −
ς qb(−1 + e)(2h + u − eu)v

2(h + u − eu)
3
20(1 + q)

,

M21 = −
ς qb(−1 + e)(2h + u3 − eu3)v3

2(h + u3 − eu3)
3
20(1 + q)

,

M22 = 1.

As a comparison with (4.4), we rewrite (5.7) as (5.8)

M3 =
(

1 + ςqJ11
0(1+q)

ςqJ12
0(1+q)

ςqJ21
0(1+q)

1

)
. (5.8)
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FIG. 19. (a) and (b) are bifurcation diagrams with parameter e for m = 0.04, q = 0.98; (c) and (d) are the phase diagram and solution curves of system (1.2) with initial
values (0.001, 0.6) in blue, and (1, 0.6) in green, (0.041, 0.001) in red and e = 0,m = 0.04, respectively; (e) and (f) are the phase diagram and solution curves of system
(1.2) with initial values (0.001, 0.6) in blue, (1, 0.6) in green, and (0.04, 0.001) in red and e = 0.05,m = 0.04, respectively.
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FIG. 20. (a) and (b) are bifurcation diagrams with parameter h for m = −0.3, q = 0.98; (c) and (d) are the phase diagram and solution curves of system (1.2) with initial
value (0.001, 0.6) in blue, and (1, 0.6) in green and h = 0.35,m = −0.3, respectively.

Thus, the characteristic equation for E3 is F(λ) = λ2 − TrM3λ

+ DetM3, where

TrM3 = 2 +
ς qJ11

0(1 + q)
,

DetM3 = 1 −
ς 2qJ12J21

0(1 + q)2
+

ς qJ11

0(1 + q)
.

All eigenvalues λ of M3 satisfy that |λ| < 1 if and only if
|TrM3| − 1 < DetM3 < 1. Assume that |TrM3| − 1 = DetM3,

(a) if TrM3 > 0, then the eigenvalues of M3 are λ = 1 and λ

= DetM3; and
(b) if TrM3 < 0, then the eigenvalues of M3 are λ = −1 and λ

= −DetM3.

Assume that |TrM3| − 1 6 DetM3 = 1, then the eigenvalues of

M3 are λ = e±iω , where ω = cos−1
(

TrM3
2

)
. From Definition 3, we

can obtain the type of equilibrium point for E3,

(1) if |TrM3| − 1 < DetM3 < 1, E3 is locally asymptotically stable;
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FIG. 21. (a) and (b) are bifurcation diagrams with parameter h for m = 0.04, q = 0.98; (c) and (d) are the phase diagram and solution curves of system (1.2) with initial
values (0.001,0.6) in blue, (1,0.6) in green, and (0.041, 0.001) in red and h = 0.4,m = 0.04, respectively; (e) and (f) are the phase diagram and solution curves of system
(1.2) with initial values (0.001,0.6) in blue, (1, 0.6) in green, (0.04, 0.001) in red, and (0.041, 0.001) in black and h = 0.6,m = 0.04, respectively.
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FIG. 22. (a) and (b) are bifurcation diagrams with parameter q form = 0.04; (c) and (d) are the phase diagram and solution curves of system (1.2) with initial value (0.17, 0.5)
in blue, (0.2, 0.5) in green, and (0.3, 0.5) in red and q = 0.91,m = 0.04, respectively. (e) and (f) are the phase diagram and solution curves of system (1.2) with initial value
(0.17, 0.5) in blue, (0.2, 0.5) in green, and (0.3, 0.5) in red and q = 0.95,m = 0.04, respectively.
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FIG. 23. (a) and (b) are bifurcation diagrams with parameter ς for m = 0.04; (c) and (d) are the phase diagram and solution curves of the system (1.2) with initial value
(0.001, 0.6) in red and q = 0.95,m = −0.3, respectively.

(2) if |TrM3| − 1 < DetM3 and DetM3 > 1, E2 is locally unstable;
and

(3) if |TrM3| − 1 > DetM3, E2 is a saddle point.

�

Remark 6: The local stability analysis of the discrete sys-
tem (5.5) is a more complex task compared to its continuous
counterpart due to the impact of the step size ς . However, when

ς = q
√

20(1 + q)m−1, the equilibrium point stability remains the
same for both systems. In contrast, the stability of the equilibrium

point in the discrete case is considerably influenced by the choice of

ς . Specifically, when 0 < ς < q
√

20(1 + q)m−1, the stability domain
of the discrete system is smaller than that of the continuous system.
As a result, the selection of step ς in numerical simulations becomes
critical for obtaining accurate results.

Remark 7: The influence of ς on the stability of E0 is studied
in Theorem 11, which reveal that the stability of E0 depends on ς . If
3 > 1

2
, then the stability of E0 is consistent with the continuous case.

On the other hand, if3 6 1
2
, i.e., 0 < ς < q

√
20(1 + q)m−1, the sta-

bility region becomes narrower. To aid in choosing an appropriate step
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FIG. 24. (a) and (b) are bifurcation diagrams with parameter ς for m = −0.5, q = 0.98; (c) and (d) are bifurcation diagrams with parameter ς for m = −0.35, q = 0.98.

and adjusting the stability of E0, Fig. 13 shows the 3 density map for
ς and q, with the white curve indicating 3 = 1

2
. Figure 13(b) illus-

trates the impact of 3 on E0 by taking λ1 as an example. The results
indicate that the stability of E0 in the discrete case is highly influenced
by step size ς and order q, which allows for flexible adjustment of the
system solution’s overall trend.

Furthermore, the stability of E1, E2, and E3 is also affected by
ς . Notably, the existence of E1 is related to the strength of Allee,
and the stability of E1 and E2 depends on the presence of E3. For
example, when E3 exists, the stability of E2 disappears. These findings
highlight the importance of considering the impact of the step size

on the stability of equilibrium points in discrete fractional-order
systems.

B. Bifurcation analysis

In this section, we investigate Neimark–Sacker bifurcation
at E3(x3, y3). Consider system (5.5) where the multipliers of the
Jacobian matrix at E3(u3, v3) are two complex conjugate roots of
modulus 1. Assume that Tr2M3 − 4DetM3 < 0, that is,

ς 2q
(
J2
11 + 4J12J21

)

0(q + 1)2
< 0. (5.9)
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Due to the roots of F(λ) are conjugate complex numbers λ1,2

= Tr±i
√

4Det−Tr2

2
with

∣∣λ1,2

∣∣ = 1, we can obtain

ς̃ = q

√
J110(q + 1)

J12J21

. (5.10)

From −2 < Tr < 2 and Tr 6= 0, −1, we get λm
1,2 6= 1 for all m

= 1, 2, 3, 4, hence λ1,2 is not at the intersection of the unit circle and
the coordinate axis when the following equation is satisfied:

−4 <
J11ς

q

0(q + 1)
< 0, and ς 6=

(
0(q + 1)

J11

) 1
q

, ς 6=
(

30(q + 1)

2J11

) 1
q

.

(5.11)
Assume that

S3 =
{(

a, b, d, e, h, k, ς , q
)

∈ R8
+ : (5.9) − (5.11) are satisfied

}
.

The unique positive equilibrium point E3(u3, v3) of system (5.5)
undergoes Neimark–Sacker bifurcation when it changes in the
neighborhood of�NSB = S1 ∩ S3.

Next, we further analyze the approximate expressions for the
stability of the Neimark–Sacker bifurcation, the direction of the
bifurcation, and the invariant curve resulting from the bifurcation.
Let ς̃ = ς + ε and choosing the parameters (a, b, d, e, h, k, ς , q) in
an arbitrary value from the set �NSB, we consider the transforma-
tions x = u − u3, y = v − v3, then system (5.5) is transferred into
the following form:

(
x
y

)
→
(
θ1 θ2

θ3 1

)(
x
y

)
+
(

f(x, y)
g(x, y)

)
, (5.12)

where

f(x, y) = a20x
2 + a11xy + a02y

2 + a30x
3 + a21x

2y + a12xy2 + a03y
3 + O

(
(|x| + |y|)4

)
,

g(x, y) = b20x
2 + b11xy + b02y

2 + b30x
3 + b21x

2y + b12xy2 + b03y
3 + O

(
(|x| + |y|)4

)
.

The characteristic equation of the Jacobian matrix of the linearized system of (5.12) evaluated at the equilibrium (0, 0) can be written as
follows:

θ1 = 1 +
ς̃ qa(−1 + e)2u3v3

2(h + u3 − eu3)
3/2

+
ς̃ q(1 + m − 2u3)u3

(1 + kv3)0(1 + q)
, θ2 = −

ς̃ qb(−1 + e)(2h + u − eu3)v3

2(h + u − eu3)
3
20(1 + q)

,

θ3 = −
ς̃ qb(−1 + e)(2h + u3 − eu3)v3

2(h + u3 − eu3)
3
20(1 + q)

,

a20 =
ς̃ q(m − 3u3 + 1)

(kv3 + 1)0(q + 1)
+

a(e − 1)2v3ς̃
q(4h + u3 − eu3)+ a(e − 1)2kv2

3ς̃
q(4h + u3 − eu3)

8(kv3 + 1)0(q + 1)(h + u3 − eu3)
5
2

,

a11 =
ς̃ q

20(q + 1)

(
a(e − 1)(2h + u3 − eu3)

(h + u3 − eu3)
3/2

+
2k(−2mu3 + m + u3(3u3 − 2))

(kv3 + 1)2

)
, a02 =

k2(u3 − 1)u3ς̃
q(m − u3)

(kv3 + 1)30(q + 1)
,

a30 =
−ς̃ q

kv30(q + 1)
+

a(e − 1)3v3ς̃
q(6h + u3 − eu3)+ a(e − 1)3kv2

3ς̃
q(6h + u3 − eu3)

16(kv3 + 1)0(q + 1)(−eu3 + h + u3)
7
2

,

a21 = 81 +82v3 +
k82

2
v3, a12 =

k2ς̃ q(m(2u3 − 1)+ u3(2 − 3u3))

(kv3 + 1)30(q + 1)
,

a03 = −
k3(u3 − 1)u3ς̃

q(m − u3)

(kv3 + 1)40(q + 1)
,

81 =
ς̃ q
(
a(e − 1)2(4h + u3 − eu3)− 8k(m − 3u3 + 1)(h + u3 − eu3)

5
2

)

8(kv3 + 1)20(q + 1)(−eu3 + h + u3)
5
2

,

82 =
a(e − 1)2kς̃ q(4h + u3 − eu3)

4(kv3 + 1)20(q + 1)(−eu3 + h + u3)
5
2

,

b21 = −
b(e − 1)2ς̃ q(4h + u3 − eu3)

80(q + 1)(−eu3 + h + u3)
5
2

,

b12 = b02 = b03 = b30 = 0.

Chaos 33, 103113 (2023); doi: 10.1063/5.0157354 33, 103113-28

Published under an exclusive license by AIP Publishing

 12 O
ctober 2023 01:31:09

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 25. Figure corresponding to the detail of Figs. 24(c) and 24(d) in (0.35, 4).

In order to obtain the normal form of (5.12) at ε = 0, we

take α = Tr(0)
2

,β =
1

2

√
4Det(0)− Tr2(0) and consider the following

transformation:

(
x
y

)
=
(

θ2 0
α − θ1 −β

)(
ω1

ω2

)
. (5.13)

Under transformation (5.13), the normal form of (5.12) can be
written as

(
ω1

ω2

)
→
(
α −β
β α

)(
ω1

ω2

)
+
(

f̃(ω1,ω2)

g̃(ω1,ω2)

)
,

where

f̃(ω1,ω2) =
a20

θ2

x2 + θ1θ2xy +
a02

θ2

y2 +
a30

θ2

x3 +
a21

θ2

x2y +
a12

θ2

xy2

+
a03

θ2

y3 + O
(
(|ω1| + |ω2|)4

)
,

g̃(ω1,ω2) =
(

a20 (α − θ1)

βθ2

−
b20

β

)
x2 +

(
θ1 (α − θ1)

βθ2

−
b11

β

)
xy

+
(

a02 (α − θ1)

βθ2

−
b02

β

)
y2 +

(
a30 (α − θ1)

βθ2

−
b30

β

)
x3

+
(

a21 (α − θ1)

βθ2

−
b21

β

)
x2y +

(
a12(α − θ1)

βθ2

−
b12

β

)
xy2

+
(

a03 (α − θ1)

βθ2

−
b03

β

)
y3 + O

(
(|ω1| + |ω2|)4

)
,

x = θ2ω1 and y = (α − θ1) ω1 − βω2. Next, we define the following
nonzero real number:

L =
([

− Re

(
(1 − 2λ1) λ

2
2

1 − λ1

ξ20ξ11

)
−

1

2
|ξ11|2 − |ξ02|2

+ Re (λ2ξ21)])ε=0 ,

where

ξ20 =
1

8

[
f̃ω1ω1 − f̃ω2ω2 + 2̃gω1ω2 + i

(
g̃ω1ω1 − g̃ω2ω2 − 2f̃ω1ω2

)]
,

ξ11 =
1

4

[
f̃ω1ω1 + f̃ω1ω2 + i

(
g̃ω1ω1 + g̃ω2ω2

)]
,

ξ02 =
1

8

[
f̃ω1ω1 − f̃ω2ω2 − 2̃gω1ω2 + i

(
g̃ω1ω1 − g̃ω2ω2 + 2f̃ω1ω2

)]
,

ξ21 =
1

16

[
f̃ω1ω1ω1 + f̃ω1ω2ω2 + g̃ω1ω1ω2 + g̃ω2ω2ω2

+ i
(
g̃ω1ω1ω1 + g̃ω1ω2ω2 − f̃ω1ω1ω2 − f̃ω2ω2ω2

)]
.

Theorem 12: Assume that (a, b, d, e, h, k, ς , q) ∈ �NSB holds
and L 6= 0, then system (5.5) undergoes the Neimark–Sacker bifur-
cation at the unique positive equilibrium point E3 (u3, v3) when the

parameter ε varies in a small neighborhood of ς̃ = q

√
J110(q+1)

J12J21
. Fur-

thermore, if L < 0, then an attracting invariant closed curve bifur-
cates from the equilibrium point for ς > ς̃ , and if L > 0, then a
repelling invariant closed curve bifurcates from the equilibrium point
for 0 < ς < ς̃ .

Remark 8: This section focuses on considering the effect of step
ς on the discrete system, for which we perform a full bifurcation
analysis and illustrate its bifurcation behavior under weak effects via
Fig. 24. It is noteworthy that the bifurcation characteristics of ς may
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FIG. 26. Phase diagrams corresponding to Figs. 24(a) and 24(d). (a) ς = 2.4, (b) ς = 2.5, (c) ς = 5.3, (d) ς = 3.518, (e) ς = 4.13, (f) ς = 4.17, (g) ς = 4.2,
(h) ς = 4.5, and (i) ς = 4.8.

slightly vary for different weak effects. To illustrate the typical varia-
tion of m and ς and the resulting bifurcation diagram, we utilize the
same parameter values as in Fig. 24 and present the results in Fig. 14.
The emergence of the Neimark–Sacker bifurcation, which ultimately
leads to chaos, is evident in Figs. 26(i) and 27(l).

Furthermore, to investigate the sensitivity of the bifurcation dia-
grams shown in Figs. 26(i) and 27(l) to initial conditions, we choose
the initial points (0.4,0.41) and (0.4,0.4), respectively, as depicted
in Figs. 15(a) and 15(b). As a result, even slight variations in the
initial population densities lead to different outcomes, underscoring
the significance of meticulously selecting initial values in numerical
simulations to capture the system’s behavior faithfully. The presented

bifurcation analysis offers valuable insights into the system’s dynamics
and can aid in predicting and controlling its behavior under diverse
conditions.

VI. NUMERICAL SIMULATION AND ANALYSIS

In this section, we present a detailed analysis of the parameter
values and equilibrium of the system (1.2).

(1) Based on Theorems 6 and 7, appropriate parameters were
selected to showcase the existence and stability of the
equilibrium point of system (1.2). It is worth mentioning that
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FIG. 27. Phase diagrams corresponding to Figs. 24(c) and 24(d). (a) ς = 1.3, (b) ς = 1.47, (c) ς = 3, (d) ς = 3.03, (e) ς = 3.365, (f) ς = 3.691, (g) ς = 3.753,
(h) ς = 3.868, (i) ς = 3.913, (j) ς = 4, (k) ς = 4.1, and (l) ς = 4.35.
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the existence of E1 is strongly affected by the value of m. In
particular, E1 does not exist when m is weak; instead, E0 becomes
a saddle point. Specifically, the selection of the system param-
eters for Fig. 1 included h = 0.9, e = 0.2, d = 0.2, a = 0.8,
k = 0.2, b = 0.3, and m = −0.3. This system has only two equi-
librium points, E0 and E2, where E2 is globally asymptotically
stable. Therefore, any trajectory starting from a point close to
E2 will converge to E2 over time. In Fig. 2, the same param-
eter values were selected as in Fig. 1, except d = 0.1. In this
case, system (1.2) exhibits three equilibrium points: E0, E2, and
E3. Notably, E2 becomes a saddle point, whereas E3 becomes a
globally asymptotically stable node. As a result, any trajectory
originating from a point close to E3 will eventually converge to
E3 over time. Furthermore, the system in Fig. 3 is character-
ized by parameter values of h = 0.2, e = 0.1, d = 0.5, a = 0.8,
k = 0.1, b = 0.6, and m = −0.3. This system possesses three
equilibria: E0, E2, and E3. Of these, E0 and E2 are saddle points,
while E3 is a globally asymptotically stable focal point. In the
long run, any trajectory beginning near E3 will spiral inward
toward E3. Finally, Fig. 4 displays the simulation results for sys-
tem (1.2) with the same parameter values as in Fig. 3, except
d = 0.1 and b = 0.4. This scenario is significant as the coex-
isting equilibrium point E3 is the instability focus, and a stable
limit cycle emerges close to E3, to which all trajectories begin-
ning from any point ultimately converge. These findings offer
further support for the theoretical results and underscore the
critical role of parameter values in determining the stability and
dynamics of the system.

(2) Based on Theorems 6 and 7, system (1.2) undergoes a qualitative
change as the strength of the Allee effect increases. Specifically,
as m approaches the strong Allee effect, system (1.2) exhibits a
saddle point E1, whereas E0 remains locally asymptotically sta-
ble. The isotropic line of E1 divides the plane into two regions,
where the initial point on the left is attracted to E0. In con-
trast, the initial point on the right enters the locally asymptot-
ically stable coexistence equilibrium E3(0.951 763, 0.024 165 9).
In Figs. 5–8, the equilibrium point E2 acts as the saddle point,
while in Fig. 9, E2 is locally asymptotically stable. Figure 5 repre-
sents system (1.2) with the same parameters as Fig. 3, except that
m = 0.6. In Fig. 6, the parameters of the system (1.2)
are h = 0.8, e = 0.1, d = 0.3, a = 0.8, k = 0.1, b = 0.6, m = 0.04,
and the coexistence equilibrium E3(0.654 838, 0.336 124) bec-
omes a stable focus. In Fig. 7, system (1.2) has the same
parameters as in Fig. 1, except that d = 0.1, m = 0.04, and the
coexisting equilibrium point E3(0.470 783, 0.15) is an unsta-
ble source. In Fig. 8, system (1.2) has parameters h = 0.8,
e = 0.1, d = 0.3, a = 0.8, k = 0.1, b = 0.6, m = 0.3, and the
coexisting equilibrium point E3(0.654 838, 0.196 639) becomes
the focus of instability, resulting in a stable limit cycle around
E3(0.654 838, 0.196 639). The isotropic line of E1 divides the
plane region into orbits, some drawn into the limit cycle and
some into E0. In Fig. 9, system (1.2) has parameters h = 0.5,
e = 0.1, d = 0.5, a = 0.8, k = 0.1, b = 0.3, m = 0.3, and the
coexisting equilibrium point E3 (1.2) does not exist. In contrast,
the boundary equilibrium point E2 is locally stable. The isotropic
lines of E1 divide the orbit in the plane region, with part of it
being attracted by E0 and the rest entering E2.

(3) Theorem 9 states that if J11

(
x3, y3

)
> 0 and T2 − 4D < 0,

then system (1.2) generates a Hopf bifurcation around the
equilibrium point E3 at m. In Fig. 10, we consider system
(1.2) with parameter values h = 0.5, e = 0.1, d = 0.25, a = 0.8,
k = 0.1, b = 0.56, which yields m∗ = −0.25. Subfigures (a) and
(b) depict the bifurcation diagrams concerning the parameter m
with q = 0.98. The equilibrium point analysis reveals that E0 is a
saddle point, and E1 does not exist when m exhibits a weak Allee
effect. In contrast, when m exhibits a strong Allee effect, E0 is
locally stable, and E1 is a saddle point. In subfigures (c) and (d),
we set m = −0.15 satisfying m < m∗. System (1.2) has an unsta-
ble coexistence equilibrium E3(0.484, 0.422) and a limit cycle.
In subfigures (e) and (f), m = 0 satisfying m > m∗. The system
(1.2) has an unstable coexistence equilibrium E3 (0.484, 0.325),
at which point the limit cycle expands. Therefore, any trajec-
tory from any point in the plane will be attracted to the limit
cycle, for example, the initial point (1,0.6). Finally, in subfigures
(g) and (h), we consider m = 0.15 satisfying m > m∗. System
(1.2) has an unstable coexistence equilibrium E3(0.484, 0.292).
Since m exhibits a strong Allee effect, the boundary equilib-
rium point E1(0.004, 0) appears to be the saddle point, and E0

is locally stable. The trajectory from the initial point (1,0.6)
reaches the stable point E0 through E1.

(4) System (1.2) is affected by the strength of the Allee effect
producing different Hopf bifurcations around E3 with param-
eters b. In Fig. 11, the parameters of system (1.2) have
values h = 0.5, d = 0.25, a = 0.8, k = 0.1, m = −0.3, q = 0.98,
and the Hopf bifurcation value of b is b∗ = 0.57. Subfigures
(a) and (b) are bifurcation diagrams concerning the param-
eter b with m = −0.3, q = 0.98. By Theorem 6, system (1.2)
has two equilibria E0 and E1 as saddle points, and one coex-
isting equilibrium E3, and E3 is globally stable when b < b∗.
In subfigures (c) and (d), the value of b takes 0.6, satisfying
b > b∗. System (1.2) has an unstable coexistence equilibrium
E3(0.438, 0.518) and a stable limit cycle. The limit cycle will
attract trajectories from (0.001,0.6) and (1,0.6). Note that the
limit cycle expands as b increases. In Fig. 12, system (1.2) picks
the same parameters as in Fig. 11, except that m = 0.04, then
the Hopf bifurcation value of b is b∗ = 0.465. Subfigures (a) and
(b) are bifurcation diagrams concerning the parameter b with
m = 0.04, q = 0.98. The system is locally asymptotically stable
at its equilibrium point E0 and produces a boundary equilib-
rium point E1(m, 0) that is a saddle point. When b < b∗, E3 is
globally stable. In subfigures (c) and (d), the value of b takes 0.5
and satisfies b > b∗. System (1.2) has an unstable coexistence
equilibrium E3(0.556, 0.309) and a stable limit cycle. Trajecto-
ries from (0.001,0.6) and (0.04,0.001) will be attracted by E0.
Trajectories from (1,0.6) and (0.041,0.001) reach the limit cycle
quickly. In subfigures (e) and (f), the value of b is taken to
be 0.6, and system (1.2) has an unstable coexistence equilib-
rium E3(0.438, 0.299) and a stable limit cycle. Trajectories from
(0.001,0.6), (0.04,0.001) and (1,0.6) will be attracted by E0. The
track from (0.041,0.001) passes through the saddle point E2 in
sufficient time to reach the limit cycle. Note that the limit cycle
expands as b increases.

(5) The analysis of the parameters d, e, h is similar to that of b.
We give a brief description. (i) In Fig. 16, system (1.2) has
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parameter values h = 0.5, b = 0.5, a = 4/5, k = 0.2, e = 0.1,
m = −0.3, q = 0.98 and the Hopf bifurcation value of d is
d∗ = 0.235. Subfigures (a) and (b) are bifurcation diagrams
with respect to parameters d, m = −0.3, q = 0.98. In subfig-
ures (c) and (d), d = 0.2 satisfying d < d∗. System (1.2) has
an unstable coexistence equilibrium E3(0.415, 0.516) and a sta-
ble limit cycle. The limit cycle will attract trajectories from
(0.001,0.6) and (1,0.6). In Fig. 17, system (1.2) is chosen with
the same parameters as in Fig. 16, except that m = 0.04, then
the Hopf bifurcation value of d is d∗ = 0.275. Subfigures (a)
and (b) are bifurcation diagrams concerning the parameter d,
where m = 0.04 and q = 0.98. In subfigures (c) and (d), d = 0.2
satisfying d < d∗. System (1.2) has an unstable coexistence equi-
librium E3(0.415, 0.277) and a stable limit cycle. Trajectories
from (0.001,0.6) and (1,0.6) will be attracted to E0. Trajectories
from (0.041,0.001) reach the limit cycle quickly. In subfigures (e)
and (f), the value of d is 0.25, and system (1.2) has an unstable
coexistence equilibrium E3(0.556, 0.309) and a stable limit cycle.
Trajectories from (0.001,0.6) and (0.04,0.0001) will be attracted
by E0. The trajectory from (1,0.6) passes the saddle point E2

in enough time to reach the limit cycle. (ii) In Fig. 18, system
(1.2) has parameter values h = 0.5, d = 1/4, a = 4/5, k = 0.1,
b = 0.5, m = −0.05, q = 0.98 and the Hopf bifurcation value of
e is e∗ = 0.18. Subfigures (a) and (b) are bifurcation diagrams
for the parameters e with m = −0.05, q = 0.98. In subfigures
(c) and (d), e = 0 satisfying e < e∗. System (1.2) has an unsta-
ble coexistence equilibrium E3(0.373, 0.292) and a stable limit
cycle. The limit cycle will attract trajectories from (1,0.6). In
Fig. 19, system (1.2) picks the same parameters as in Fig. 18,
except that m = 0.04, then the Hopf bifurcation value of e is
e∗∗ = 0.22. Subfigures (a) and (b) are bifurcation diagrams for
the parameter d, where m = 0.04 and q = 0.98. In subfigures
(c) and (d), e = 0 satisfying e < e∗. System (1.2) has an unstable
coexistence equilibrium E3(0.373, 0.233) and a stable limit cycle.
Trajectories from (0.001,0.6) and (1,0.6) will be attracted to E0.
Trajectories from (0.041,0.001) reach the limit cycle quickly. In
subfigures (e) and (f), the value of e is 0.05, and system (1.2) has
an unstable coexistence equilibrium E3(393, 0.251) and a stable
limit cycle. Trajectories from (0.001,0.6) and (0.04,0.0001) will
be attracted by E0. The trajectory from (1,0.6) passes the saddle
point E2 in enough time to reach the limit cycle. (iii) In Fig. 20,
system (1.2) has parameter values e = 0.1, d = 1/4, a = 4/5,
k = 0.1, b = 0.5, m = −0.3, q = 0.98 and the Hopf bifurcation
value of h is h∗ = 0.43. Subfigures (a) and (b) are bifurca-
tion diagrams for the parameters h with m = −0.3, q = 0.98.
In subfigures (c) and (d), h = 0.35 satisfying h < h∗. System
(1.2) has an unstable coexistence equilibrium E3(0.429, 0.474)
and a stable limit cycle. The limit cycle will attract trajecto-
ries from (0.001,0.6) and (1,0.6). In Fig. 21, system (1.2) has
the same parameters as in Fig. 20, except that m = 0.04, then
the Hopf bifurcation value of h is h∗ = 0.89. Subfigures (a)
and (b) are bifurcation diagrams for the parameter h, where
m = 0.04 and q = 0.98. In subfigures (c) and (d), h = 0.4 satis-
fying h < h∗. The system (1.2) has an unstable coexistence equi-
librium E3(0.448, 0.273) and a stable limit cycle. Trajectories
from (0.001,0.6) and (1, 0.6) will be attracted to E0. Trajectories

from (0.041,0.001) reach the limit cycle quickly. In subfigures
(e) and (f), the value of h is 0.6, and system (1.2) has an unstable
coexistence equilibrium E3(0.516, 0.319) and a stable limit cycle.
Trajectories from (0.001,0.6) and (0.04,0.0001) will be attracted
by E0. The trajectory from (0.041,0.001) and (1,0.6) passes the
saddle point E2 in enough time to reach the limit cycle.

(6) By Theorem 9, the dynamical system described by system
(1.2) experiences a Hopf bifurcation around point E3 when
the parameter q reaches the critical value q∗. The influence of
the Allee effect on this system is explored in Figs. 22 and 23,
which demonstrate the bifurcation behavior at two different
values of the parameter m, namely, m = 0.04 and m = −0.3,
respectively. In Fig. 22, the system parameters are h = 0.5,
e = 0.1, b = 0.5556, a = 0.8, k = 0.2, b = 0.25, and m = 0.04.
The critical value of q is determined to be q∗ = 0.865. Bifurca-
tion diagrams for the parameter q are shown in subfigures (a)
and (b). In subfigures (c) and (d), q = 0.91 satisfying q < q∗.
The system possesses a locally stable equilibrium point E0, two
saddle points E1 and E2, and an unstable coexisting equilibrium
point E3 located at the coordinates (0.4837,0.5168). Trajectories
originating from the initial points (0.17,0.5) converge toward
E0, while trajectories starting from (0.2,0.5) and (0.3,0.5) pass
through E2 and are attracted to the limit cycle. Analogously, in
subfigures (c) and (d), the value of q is 0.95, and system (1.2) has
an unstable coexistence equilibrium E3(0.483 47, 0.290 747) and
a stable limit cycle. Trajectories from (0.17,0.5) and (0.2,0.5) will
be attracted by E0. The trajectory from (0.3,0.5) passes the sad-
dle point E2 in enough time to reach the limit cycle. Figure 23
uses the same system parameters as in Fig. 22, except that
m = −0.3 is chosen instead of m = 0.04. The critical value of
q is found to be q∗ = 0.85. Bifurcation diagrams for q are shown
in subfigures (a) and (b), while subfigures (c) and (d) depict the
dynamics of the system when q is set to 0.95. In this case, the
system lacks the equilibrium point E1 and possesses a locally
stable equilibrium point E0, a saddle point E2, and an unsta-
ble coexisting equilibrium point E3 situated at the coordinates
(0.2564,0.4506). The trajectory originating from (0.0001,0.6)
passes through E0, E2 and is attracted to the limit cycle, while the
trajectory from (0.2564,0.4506) is also drawn toward the limit
cycle.

(7) system (1.2) generates Neimark–Sacker bifurcation at weak
Allee effects with bifurcation parameters of ς . In Figs. 24(a)
and 24(b), system (1.2) has parameter values h = 0.5, e = 0.1,
b = 0.556, a = 4/5, k = 0.5, m = −0.5, q = 0.98, d = 0.095
and the initial point is (0.5,0.3). By Theorem 12, E0 is a saddle
point, E2 is locally unstable, and E3 is unstable at ς∗ = 2.45. In
Figs. 24(c) and 24(d), system (1.2) has the same parameter val-
ues as in Figs. 24(a) and 24(b), except that m = −0.35 and the
initial point is (0.4,0.41). By simple calculation, E0 is the saddle
point, E2 is the saddle point, and E3 is unstable at ς∗ = 1.44.
We compare subfigures (a) and (b) as well as (c) and (d), and it
is clear that subfigures (c) and (d) have a more complex period
window. Figure 25 shows a detailed plot of Figs. 24(c) and 24(d)
at (3.5,4). System (1.2) appears to have several cycle windows in
(3.5,4), including periodic-25 and 40 orbits, demonstrating the
complex behavior of system (1.2).
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Figure 26 is the corresponding phase diagram of Figs. 24(a)
and 24(b), showing the evolution of the dynamical behavior of ς
at m = −0.5. At ς = 2.4 (a), E3 is the stable focus; as ς crosses
the bifurcation point to reach 2.5 (b), E3 becomes unstable, and
a stable invariant cycle appears; as ς increases, the constant cycle
begins to expand, e.g., ς = 3 (c) and ς = 3.518 (d); as ς = 4.13 (e),
system (1.2) emerges with periodic-9 orbits; at ς = 4.17 (f), each
period point begins to expand into a small cycle of periods; until
ς = 4.5 (g), the system begins to enter a chaotic state, and at
ς = 4.8, it enters a fully chaotic state.

Figure 27 is the corresponding phase diagram of Figs. 24(c)
and 24(d), showing the evolution of the dynamical behavior
of ς at m = −0.35. At ς = 1.3 (a), E3 is the stable focus; as
ς crosses the bifurcation point to reach 1.47 (b), E3 becomes
unstable, and a stable invariant cycle appears; as ς increases,
the constant cycle begins to expand, e.g., ς = 3 (c); as ς

= 3.03 (d), 3.65 (e), 3.691 (f), 3.753 (g), 3.868 (h), 3.913 (i) the sys-
tem appears to have periodic-40, 25, 40, 51, 12, 36 orbits, respec-
tively; ς = 4 (j), 4.1 (k), system (1.2) begins to overstep into the
chaotic state and enters it ultimately at ς = 4.35 (l).

VII. CONCLUSION

This paper provides insight into the effects of Allee and fear
effects in a disordered prey–predator system with group defense
and prey refuge. The work demonstrates the existence, uniqueness,
non-negativity, and boundedness of the system’s solution, which are
fundamental properties in dynamical systems theory. Furthermore,
the coexistence and stability of the equilibrium of system (1.2) are
thoroughly analyzed. In particular, the paper studies the coexistence
equilibrium with respect to the occurrence of Hopf bifurcations at
five crucial parameters and the memory effects q. Additionally, sys-
tem (1.2) is discretized, and the impact of step size on the stability
and bifurcation of the system is investigated. Our findings reveal the
process from stability to chaos, providing important insights into the
dynamics of the system. The following conclusions are obtained:

(1) The Allee effect plays a pivotal role in determining the persis-
tence and stability of a system. When the effect is strong, system
(1.2) exhibits a locally asymptotically stable extinction equilib-
rium point E0 and a saddle point E1. The isoclinic line associated
with E1 divides the initial population density into two distinct
regions. If the initial density is near E0, the system population is
at risk of extinction. Conversely, suppose the initial density falls
within the other region. In that case, four scenarios may arise:
predator extinction and prey flourishing without a coexistence
equilibrium, population coexistence, cyclic behavior of the two
populations, or complete extinction of the system’s population.
When the Allee effect weakens, the boundary equilibrium point
E1 collides with the extinction equilibrium point E0 to form a
single saddle point. Consequently, only one extinction equilib-
rium point exists. After a prolonged period, the initial density of
the two populations will lead to one of three scenarios: predator
extinction and prey flourishing in the absence of a coexistence
equilibrium, population coexistence, two populations entering a
periodic state.

(2) In the presence of a coexistence equilibrium in the system, we
investigate the occurrence of a Hopf bifurcation of the system at
E3. Specifically, we show that if the initial densities of two species
are not in the attraction domain of the extinction equilibrium
point, then it is possible to reduce the Allee effect, conversion
rate of the prey, amount of the prey available to the preda-
tor and memory effect or increase threshold for the transition
between herd grouping and solitary behavior, and death rate of
the predator population, eliminating the limit cycle and allow-
ing the system to reach stable coexistence. This has significant
implications for the ecosystem as a whole. By achieving sta-
ble coexistence, predator populations can acquire their biomass
over a more extended period, which is crucial for survival. In
addition, the increase in prey group behavior has a protective
effect on the predator population, contributing to the stability
and persistence of the entire ecosystem.

(3) The Allee effect plays a pivotal role in determining the persis-
tence of fractional-order systems (1.2) in prey–predator ecolog-
ical systems, enabling the prey species to acquire experience and
memory from past encounters, thereby altering their behavior.
This high memory capacity represents a crucial characteris-
tic that needs to be considered when simulating the dynamics
of such ecological systems. Moreover, the choice of step size
in modeling fractional-order systems can significantly impact
numerical simulations and provide a comprehensive under-
standing of the dynamics, especially regarding bifurcation to
chaos. For instance, in the context of the stability of discrete sys-
tems and the creation of a Neimark–Sacker bifurcation at E3,
selecting the appropriate step size is essential to maintain sta-
bility in both populations, consistent with the continuous case.
However, if the step size exceeds a certain threshold, the stabil-
ity of the discrete system can undergo dramatic changes, leading
to multi-periods and chaos. Therefore, it is crucial to consider
the order and step size when the dynamics of a prey–predator
ecosystem.

The importance of our results for the accurate modeling and
analysis of ecosystems is significant. By considering the order and
step length of the discrete system, we can gain a more comprehen-
sive understanding of the underlying dynamics of prey–predator
interactions. It also provides information for developing effective
ecological conservation management strategies to help ensure these
complex ecosystems’ long-term stability and sustainability. Inspired
by stability analysis and chaotic attractors, our future work will focus
on bistability phenomena in systems and more complex dynamical
phenomena, such as co-dimensional bifurcation, chaotic synchro-
nization, and control, which will also be investigated.
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