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A B S T R A C T

The study of electromagnetic detection satellite scheduling problem (EDSSP) has attracted attention due to the
detection requirements for a large number of targets. This paper proposes a mixed-integer programming model
for the EDSSP problem and a genetic algorithm based on reinforcement learning (RL-GA). Numerous factors
that affect electromagnetic detection are considered in the model, such as detection mode, bandwidth, and
other factors. The RL-GA embeds a Q-learning method into an improved genetic algorithm, and the evolution
of each individual depends on the decision of the agent. Q-learning is used to guide the population search
process by choosing evolution operators. In this way, the search information can be effectively used by the
reinforcement learning method. In the algorithm, we design a reward function to update the Q value. According
to the problem characteristics, a new combination of <state, action> is proposed. The RL-GA also uses an
elite individual retention strategy to improve search performance. After that, a task time window selection
algorithm (TTWSA) is proposed to evaluate the performance of population evolution. Several experiments are
used to examine the scheduling effect of the proposed algorithm. Through the experimental verification of
multiple instances, it can be seen that the RL-GA can solve the EDSSP problem effectively. Compared with the
state-of-the-art algorithms, the RL-GA performs better in several aspects.
1. Introduction

In recent years, the rapid development of aerospace has provided
new solutions for various types of tasks such as information commu-
nication, environmental monitoring, and disaster forecasting [1]. The
applications that satellites can play can be divided into three cate-
gories: observation, communication, and navigation according to the
different carrying payloads. Here, observation satellites can be further
classified according to the payload equipped with visible light, infrared,
synthetic aperture radar, antenna, and others. Satellites that use signal
receivers and antennas as payloads are called electromagnetic detection
satellites. Electromagnetic detection satellites can detect and process
electromagnetic signals to obtain helpful information. Compared with
optical imaging satellites, electromagnetic detection satellites have a
wider detection range and are not easily affected by weather factors. As
a result, it can execute tasks in all types of weather conditions. Based on
known signal characteristics, electromagnetic detection satellites can
also search for unknown signals through a wide range of frequencies.

There are a large number of electromagnetic signals on the surface
of the earth, and many types of electromagnetic signals constitute
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the surface electromagnetic environment together. The detection of
surface electromagnetic environments can effectively support work in
various fields such as environment, agriculture, military, meteorology,
and others. The electromagnetic detection satellite scheduling problem
(EDSSP) is to plan the satellite resources used to execute the demand
and determine the specific execution time of each task. Detection
demands are put forward by various users and are expected to be met
fully. However, the tasks that can be performed during each orbit are
quite limited. This is due to the existence of limitations such as satellite
orbit, detection range, and operating conditions. The goal of electro-
magnetic detection satellite scheduling is to generate a reasonable task
sequence within a certain time range. This sequence is expected to
generate sufficient detection profit and satisfy users’ preferences. While
the characteristic of oversubscription is very common in a satellite
scheduling problem. How to build a model and design a scheduling
algorithm then becomes the most central issue.

Electromagnetic signal detection needs to effectively balance the
relationship between the detection accuracy and the satellite capability.
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From the signal detection activity itself, when the density of detection
frequency points is increased to improve the detection accuracy, the
amount of data generated will also increase accordingly. The capacity
of the onboard storage device is limited. If the storage device is fully
used, it will not be possible to execute a new task until it is erased. The
reasonable setting of detection accuracy according to user needs can
improve detection performance.

Existing studies of electromagnetic detection satellite mission plan-
ning have proposed corresponding solution methods for multiple sce-
narios such as multiple area detection and moving target detection [2,
3]. However, the specific modes of satellites are treated in a simpli-
fied way in these studies, which only addresses the problem that is
common to all types of satellite scheduling problems. It can be said
that these studies are not mature and in-depth enough. Compared with
the electromagnetic detection satellite scheduling problem, there are
many studies related to the optical satellite observation scheduling
problem [4,5]. In terms of model building, Berger and Barkaoui used
the quadratic programming method to construct the visible light satel-
lite scheduling model [6,7]. Cho et al. proposed a two-step binary linear
programming model to formulate a satellite observation scheme for a
low-orbit satellite constellation [8]. Niu et al. considered using satellites
to complete post-disaster large-area observation tasks built a multi-
objective optimization model and used genetic algorithms to solve
this problem [9]. Chen et al. proposed a mixed-integer programming
model for the agile satellite scheduling problem, constructing decision
variables based on conflicts between time windows and using 5-index
variables to obviate the need for a Big-M approach [10].

Evolutionary algorithms have been widely used in solving satel-
lite task scheduling problems. The applications of the genetic algo-
rithm [11], differential evolution [12], ant colony algorithm [13],
memetic algorithm [14] and others algorithms have increased rapidly
in recent years. Compared with accurate algorithms, the evolutionary
algorithm has a lower computational cost on large-scale problems.
The studies of [15,16] show that genetic algorithms are more suitable
for solving satellite task scheduling problems than other evolutionary
algorithms. E. et al. proposed an individual reconfiguration-based inte-
ger coding genetic algorithm (IRICGA) for regional target observation
planning and designed a new area partitioning method based on two
kinds of discrete parameters [17]. Zhang and Xing adopted a novel idea
of encoding and decoding for the integrated satellite imaging and data
transmission scheduling problem to improve the search efficiency of
the genetic algorithm. Two test cases are used to verify the algorithm
effect [18]. Song et al. and Du et al. used non-dominated sorting-based
and decomposition-based multi-objective evolutionary algorithms, re-
spectively, to find high-quality solutions for satellite range scheduling
problems [19,20]. Xhafa et al. proposed a genetic algorithm combined
with the STK solution tool to obtain a plan of ground stations [21].

Existing research on reinforcement learning to solve satellite schedul
ing problems rarely considers combining it with other algorithms.
Solving this problem using the reinforcement learning method alone
is also just beginning. Wei et al. directly used reinforcement learning
methods to solve imaging satellite scheduling problems [22]. Chen
et al. built an end-to-end reinforcement learning framework, used the
attention mechanism, and proposed an actor–critic network training
method [23]. To the best of our knowledge, there is no research that
the embedded approach to solving the satellite scheduling problem.

Combining reinforcement learning with search algorithms can effec-
tively utilize the respective advantages of the two methods to improve
search efficiency and search performance [24]. A part of the related
research focuses on numerical optimization problems [25,26].

Rodríguez-Esparza et al. [27] used a hyper-heuristic algorithm con-
sisting of a multi-armed bandit RL method and a simulated annealing
algorithm to solve the path planning problem for electric vehicles with
capacity constraints. This hyper-heuristic algorithm uses RL to select a
neighborhood search strategy and obtains a legal route by repairing the
2

solution. Zhang et al. [28] proposed an improved algorithm combining
the Q-learning method and multi-objective particle swarm algorithm
for the multi-UAV path planning problem. This algorithm uses a deep
reinforcement learning method to determine the mode used for particle
swarm search. Du et al. [29] considered the effect of electricity cost in
a flexible job shop scheduling problem and proposed a reinforcement
learning-based distribution estimation algorithm. The algorithm uses
DQN to select the rules for process adjustment. Half of the individuals
are constituted in this way and the other half is optimized by the
distribution estimation algorithm.

These combined methods above achieve good performance and
demonstrate the advantages of this algorithm design idea. For the
EDSSP problem, we try to use a new combination of a genetic algorithm
and reinforcement learning method to find the ideal plan. Control
parameters are extremely important for each evolutionary algorithm,
and these parameters are always sensitive to the problem. This easily
affects the generalization of the algorithm. The reinforcement learning
method has strong generalization capabilities but is prone to poor
performance due to a lack of domain-specific knowledge. So, we try
to apply the reinforcement learning method to the evolutionary algo-
rithm and effectively combine the respective advantages of these two
methods.

Our proposed reinforcement learning-based genetic algorithm al-
lows researchers to invest more effort in algorithm and strategy design.
The reinforcement learning approach helps the genetic algorithm find
higher-quality solutions through intelligent decision-making. Such an
approach has strong application prospects and can effectively deal with
various types of complex situations. For the method, this is the first
time that reinforcement learning is used to embed into an evolutionary
algorithm for solving a satellite scheduling problem, and this research
idea can also be applied to other combinatorial optimization problems.

The main contributions of our research are:
1. A refined model of the EDSSP problem is built. This mixed-

integer programming model considers many practical factors such as
detection mode, detection angle, and data volume, which is conducive
to obtaining a more practical scheduling scheme.

2. A genetic algorithm based on reinforcement learning is proposed.
The algorithm uses a reinforcement learning method to drive the
population search. Combining the problem characteristics of EDSSP, we
construct a new combination of state and action methods and propose a
reward function and strategy selection method. In addition, a two-stage
task time window selection algorithm is proposed. It is used to generate
detection schemes and calculate the fitness function values.

3. The effectiveness of the proposed RL-GA is verified by extensive
experiments. The RL-GA is excellent in terms of solution performance
and can solve large-scale EDSSP effectively. It also provides an idea for
solving other combinatorial optimization problems.

The remainder of this paper is organized as follows. The second part
introduces the model of the electromagnetic detection satellite schedul-
ing problem. The third part introduces the reinforcement learning-
based genetic algorithm and the task time window selection algorithm.
The fourth part verifies the effect of the proposed algorithm. The fifth
part summarizes the content and analyzes possible directions for further
research in the future.

2. Model

2.1. Problem description

The EDSSP problem is to designate a time-ordered task execution
sequence for electromagnetic detection satellites. The goal is to max-
imize the detection sequence profit while satisfying various satellite
constraints. For a satellite to successfully perform any mission, it needs
to determine the on/off time of the receiver i.e. the start time and
the end time of the mission. A series of parameter settings such as
detection mode, frequency, bandwidth, and polarization mode must

also be followed.
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The time range from the beginning to the end of the signal beam
coverage of the electromagnetic satellite is called the visible time
window. Since the electromagnetic satellite antenna can effectively
detect a wide range of ground signals, to reduce noise and improve
the detection accuracy, the angle between the signal source and the
pointing direction of the satellite antenna needs to be within a certain
range.

The detection quality is affected by two factors. On the one hand,
the signal gain is affected by the angular relationship between the
satellite antenna and the signal source. When the center of the satellite
antenna passes directly above the signal source, the maximum signal
gain can be obtained, and the signal gain is directly linked to the
detection profit. Signal gain is inversely related to the angle between
the antenna and the signal source. In other words, when the centerline
of the signal source beam coincides with the extension line of the
satellite antenna pointing direction, the detection effect is the best. On
the other hand, the detection accuracy will also affect the detection
profit. The detection accuracy is limited by the inherent capability
of the receiver, and the number of frequency points will also have a
direct impact on the detection accuracy. There is a positive correlation
between the bandwidth and the number of frequency points, and the
amount of data obtained by detection varies significantly depending
on settings. The limited satellite storage capacity means that only a
fraction of tasks can be set to the highest bandwidth, while many tasks
need to be set to a smaller bandwidth.

2.2. Symbols and variables

𝑇 : Set of tasks, a total of |𝑇 | tasks. For task 𝑡𝑎𝑠𝑘𝑗 , the following
attributes are defined:

𝑒𝑠𝑡𝑗 : The earliest available start time of the task.
𝑙𝑒𝑡𝑗 : The latest available end time of the task.
𝑑𝑢𝑟𝑗 : Duration of the task.
𝜃max
𝑗 : Maximum allowable detection angle of the task.
𝑑𝑒𝑔𝑟𝑒𝑒𝑗 : Task importance level.
𝑚𝑗 : The amount of data for the task.
𝐺𝑗 : The signal gain can be obtained from the task.
𝑆: Set of satellites, a total of |𝑆| satellites. For satellite 𝑠𝑖, the

following attributes are defined:
𝐷: Satellite antenna diameter.
𝜂 : Antenna efficiency.
𝑂𝑖: Set of Orbits, a total of |

|

𝑂𝑖
|

|

orbits belonging to satellite 𝑠𝑖.
𝛽 : Satellite detection unit data volume.
𝑀 : Satellite storage capacity.
𝛤𝑝𝑜𝑙 : Satellite polarization transition time.
𝛤𝑚𝑜𝑑𝑒 : Satellite detection mode transition time.
𝛤𝑏𝑎𝑛𝑑 : Satellite bandwidth setting transition time.
𝛤𝑓𝑟𝑒: Satellite frequency band transition time.
𝛥 : Satellite load on/off time.
𝑇𝑊 : Set of time windows, with a total of |𝑇𝑊 | time windows. For

the time window 𝑡𝑤𝑖𝑗𝑜𝑘, the following attributes are defined:
𝐸𝑉 𝑇𝑖𝑗𝑜𝑘 : The earliest visible time of the task 𝑗 in the time window

on orbit 𝑜 for satellite 𝑖.
𝐿𝑉 𝑇𝑖𝑗𝑜𝑘 : The latest visible time of the task 𝑗 in the time window 𝑘

n orbit 𝑜 for satellite 𝑖.
𝜃𝑡
𝑖𝑗𝑜𝑘

: Detection angle of the satellite 𝑖 at the time 𝑡 in the time
indow 𝑘 of the task 𝑗 on the orbit 𝑜.
𝐼 : A big integer.
Decision variables:
𝑥𝑖𝑗𝑜𝑘 : Whether the satellite 𝑖 is in the time window 𝑘 on the orbit

whether the task 𝑗 is executed, if the task is executed, 𝑥𝑖𝑗𝑜𝑘 = 1;
therwise, 𝑥𝑖𝑗𝑜𝑘 = 0.
𝑠𝑡𝑖𝑗𝑜 : Start time of the satellite 𝑖 on the orbit 𝑜 to execute the task
3

.

.3. Mathematical model

We refer to the studies of [30,31] and make the following assump-
ions.
Assumptions:

• All electromagnetic detection satellites have the same receivers
and storage devices;

• The detection process will not be affected by external factors;
• The detection task is definite, and there will be no temporary

changes or cancellations;
• The satellite has sufficient energy during orbit;
• Each task can be completed after one detection, without repeated

detection.

The calculation formula of the detection profit that can be obtained
y a single detection task is:

𝑗 = 𝐺0 ⋅
[

𝐽1 (𝑢)
2𝑢

+ 36
𝐽3 (𝑢)
𝑢3

]2
(𝑑𝐵𝑖) (1)

𝐺0 = 𝜂 𝜋
2𝐷2

𝜆2
(𝑑𝐵𝑖) (2)

where 𝑢 = 2.07123 sin (𝜃) ∕ sin
(

𝜃3𝑑𝐵
)

, 𝐽1 (𝑢) and 𝐽3 (𝑢) are the 1st and
3rd order Bessel functions of the first kind, respectively. 𝜃 is the angle
between the satellite antenna and the center of the signal source, 𝜃3𝑑𝐵
is the angle at which the antenna gain is attenuated by 3 dB relative to
the center of the beam, and the calculation formula as follows.

𝜃3𝑑𝐵 = 70𝜆∕𝐷 (3)

where 𝜆 represents the wavelength, and 𝐷 indicates the diameter of the
antenna.

In this paper, the bandwidth used by satellites to perform detection
tasks is dynamically matched according to the priority of detection
tasks. The importance of the task is high, and the bandwidth used
is large so that the detection effect will be better. However, due to
the limitation of satellite storage, the detection bandwidth needs to be
scientifically set. The formula for setting the bandwidth according to
the degree of importance 𝑑𝑒𝑔𝑟𝑒𝑒𝑗 is shown below.

𝜑
(

𝑑𝑒𝑔𝑟𝑒𝑒𝑗
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ1 𝑑𝑒𝑔𝑟𝑒𝑒𝑗 > 75
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ2 50 < 𝑑𝑒𝑔𝑟𝑒𝑒𝑗 ≤ 75
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ3 25 < 𝑑𝑒𝑔𝑟𝑒𝑒𝑗 ≤ 50
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ4 0 < 𝑑𝑒𝑔𝑟𝑒𝑒𝑗 ≤ 25

(4)

The bandwidth setting can also affect the detection profit, and the
signal gain can be measured by the function 𝛺

[

𝜑
(

𝑑𝑒𝑔𝑟𝑒𝑒𝑗
)]

. When the
bandwidth of the detection task 𝑗 is set according to 𝜑

(

𝑑𝑒𝑔𝑟𝑒𝑒𝑗
)

, the
amount of data generated per second is 𝛽 ⋅𝜑

(

𝑑𝑒𝑔𝑟𝑒𝑒𝑗
)

. Combined with
the task detection time 𝑑𝑢𝑟𝑗 , the total data amount of task 𝑗 can be
obtained by:

𝑚𝑗 = 𝛽 ⋅ 𝜑
(

𝑑𝑒𝑔𝑟𝑒𝑒𝑗
)

⋅ 𝑑𝑢𝑟𝑗 (5)

The main parameters of the electromagnetic detection task include
frequency, bandwidth, polarization, and detection mode. The parame-
ters of satellite 𝑠𝑖 for task 𝑡𝑎𝑠𝑘𝑗 are set as

(

𝑓𝑟𝑒𝑖𝑗 , 𝑏𝑎𝑛𝑑𝑖𝑗 , 𝑝𝑜𝑙𝑖𝑗 , 𝑚𝑜𝑑𝑒𝑖𝑗
)

.
Where 𝑓𝑟𝑒𝑖𝑗 denotes the detection frequency, 𝑏𝑎𝑛𝑑𝑖𝑗 denotes the band-
width, 𝑝𝑜𝑙𝑖𝑗 denotes the polarization mode, and 𝑚𝑜𝑑𝑒𝑖𝑗 denotes the
detection mode. The electromagnetic detection satellite needs to adjust
the parameters of the onboard equipment when performing different
tasks. The transition time between tasks is composed of four parts.
The first part is the time required for the change of the polarization
mode. The second part is the time required for the change of the
detection mode. The third part is the time required for the change of
the frequency, and the fourth part is the time required for the change
of the bandwidth. In addition, it also takes a certain amount of time for
each onboard equipment to be turned on and off, and this time interval
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𝛿 must be satisfied between every two tasks. To simplify the constraint
judgment, we introduce a new variable 𝑡𝑟𝑎𝑛𝑖𝑗𝑗′ , which represents the
total transition time. The transition time of the two tasks 𝑗 and 𝑗′ is as
follows.
𝑡𝑟𝑎𝑛𝑖𝑗𝑗′ = max

{

𝛤𝑓𝑟𝑒
(

𝑓𝑟𝑒𝑖𝑗 , 𝑓𝑟𝑒𝑖𝑗′
)

, 0,
𝛥𝛤𝑏𝑎𝑛𝑑

(

𝑏𝑎𝑛𝑑𝑖𝑗 , 𝑏𝑎𝑛𝑑𝑖𝑗′
)

, 𝛤𝑝𝑜𝑙
(

𝑝𝑜𝑙𝑖𝑗 , 𝑝𝑜𝑙𝑖𝑗′
)

𝛤𝑚𝑜𝑑𝑒
(

𝑚𝑜𝑑𝑒𝑖𝑗 , 𝑚𝑜𝑑𝑒𝑖𝑗′
)}

(6)

where 𝛤𝑝𝑜𝑙 is the satellite polarization transition time, 𝛤𝑚𝑜𝑑𝑒 is the
satellite detection mode transition time, 𝛤𝑏𝑎𝑛𝑑 is the satellite bandwidth
setting transition time, 𝛤𝑓𝑟𝑒 is the satellite frequency transition time, 𝛥
is the satellite load on/off time.

The scheduling goal of the EDSSP problem is to obtain the highest
detection profit. The objective function is represented as follows.

Objective function:

max
∑

𝑖∈𝑆

∑

𝑗∈𝑇

∑

𝑜∈𝑂𝑖

∑

𝑘∈𝑇𝑊
𝐺𝑗 ⋅𝛺

[

𝜑
(

𝑑𝑒𝑔𝑟𝑒𝑒𝑗
)]

⋅ 𝑥𝑖𝑗𝑜𝑘 (7)

where 𝐺𝑗 is signal gain can be obtained from the task, 𝛺
[

𝜑
(

𝑑𝑒𝑔𝑟𝑒𝑒𝑗
)]

is the gain due to the bandwidth setting, the product of 𝐺𝑗 and
𝛺
[

𝜑
(

𝑑𝑒𝑔𝑟𝑒𝑒𝑗
)]

represents the profit of the task.
Constraints:

𝑠𝑡𝑖𝑗𝑜 ≥ 𝑒𝑠𝑡𝑗 ⋅ 𝑥𝑖𝑗𝑜𝑘,∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝑇 , 𝑜 ∈ 𝑂𝑖, 𝑘 ∈ 𝑇𝑊 (8)

(

𝑠𝑡𝑖𝑗𝑜 + 𝑑𝑢𝑟𝑗
)

⋅ 𝑥𝑖𝑗𝑜𝑘 ≤ 𝑙𝑒𝑡𝑗 ,∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝑇 , 𝑜 ∈ 𝑂𝑖, 𝑘 ∈ 𝑇𝑊 (9)

𝜃𝑡
𝑖𝑗𝑜𝑘

≤ 𝜃max
𝑗 ,∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝑇 , 𝑜 ∈ 𝑂𝑖, 𝑘 ∈ 𝑇𝑊 , 𝑡 ∈

[

𝑠𝑡𝑖𝑗𝑜, 𝑠𝑡𝑖𝑗𝑜 + 𝑑𝑢𝑟𝑗
]

(10)

𝑠𝑡𝑖𝑗𝑜 ≥ 𝐸𝑉 𝑇𝑖𝑗𝑜𝑘 ⋅ 𝑥𝑖𝑗𝑜𝑘,∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝑇 , 𝑜 ∈ 𝑂𝑖, 𝑘 ∈ 𝑇𝑊 (11)

(

𝑠𝑡𝑖𝑗𝑜 + 𝑑𝑢𝑟𝑗
)

⋅ 𝑥𝑖𝑗𝑜𝑘 ≤ 𝐿𝑉 𝑇𝑖𝑗𝑜𝑘,∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝑇 , 𝑜 ∈ 𝑂𝑖, 𝑘 ∈ 𝑇𝑊 (12)

∑

𝑖∈𝑆
∑

𝑗∈𝑇 ∖{𝑗′}
∑

𝑘∈𝑇𝑊 𝑚𝑗 ⋅ 𝑥𝑖𝑗𝑜𝑘 + 𝑚𝑗′ ⋅ 𝑥𝑖𝑗′𝑜𝑘′ ≤ 𝑀,
∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝑇 , 𝑜 ∈ 𝑂𝑖, 𝑘 ∈ 𝑇𝑊

(13)

(

𝑠𝑡𝑖𝑗𝑜 + 𝑑𝑢𝑟𝑗
)

⋅ 𝑥𝑖𝑗𝑜𝑘 + 𝑡𝑟𝑎𝑛𝑖𝑗𝑗′ ≤ 𝑠𝑡𝑖𝑗′𝑜 + 𝐼 ⋅
(

1 − 𝑥𝑖𝑗′𝑜𝑘′
)

,
𝑗 ≠ 𝑗′, 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑇 , 𝑜 ∈ 𝑂𝑖, 𝑘 ∈ 𝑇𝑊

(14)

∑

𝑖∈𝑆

∑

𝑜∈𝑂𝑖

∑

𝑘∈𝑇𝑊
𝑥𝑖𝑗𝑜𝑘 ≤ 1,∀𝑖 ∈ 𝑆, 𝑜 ∈ 𝑂𝑖, 𝑘 ∈ 𝑇𝑊 (15)

𝑥𝑖𝑗𝑜𝑘 ∈ {0, 1} (16)

Constraints 1–2 indicate that the start time and end time of the task
must be within the time range required. Constraint 3 indicates that the
detection angle cannot exceed the task maximum angle requirement.
Constraints 4–5 indicate that the start time and end time are within
the visible time window. Constraint 6 indicates that the satellite cannot
exceed the upper limit of the satellite storage capacity in each orbit.
Constraint 7 indicates that the satellite must meet various transition
time requirements to perform every two tasks. Constraint 8 indicates
that each task can be executed at most once. Constraint 9 indicates the
value range of the decision variable.

3. The proposed method

Since the single satellite imaging scheduling problem has been
proved to be NP-hard, the more complex EDSSP problem does not
exist polynomial time algorithm [32,33]. Therefore, we propose a
reinforcement learning-based genetic algorithm to solve the EDSSP
problem. In addition, we also design a task time window selection
algorithm for generating schemes. The reinforcement learning-based
genetic algorithm, details in evolutionary algorithms, and strategies in
reinforcement learning and task time window selection algorithms are
4

given in this section.
Algorithm 1: Reinforcement Learning based Genetic Algorithm
(RL-GA)

Input: population size 𝑁𝑝, learning rate 𝛼, discount factor 𝛾,
Q-table 𝑄, 𝜀, control parameter 𝑇 , crossover operator
𝐶𝑜, mutation operator 𝑀𝑜, 𝐿

Output: 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
1 Initialize algorithm parameters and the population;
2 Set 𝑡 = 1, 𝑛𝑢𝑚_𝑒𝑣𝑎𝑙 = 0, 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡 = 0, 𝑐𝑜𝑢𝑛𝑡 = 0, 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑒𝑠𝑡 = 0,

𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑒𝑠𝑡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = [ ], 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = [ ];
3 Initialize Q-table(𝐶𝑜,𝑀𝑜);
4 while 𝑛𝑢𝑚_𝑒𝑣𝑎𝑙 < 𝑀𝐹𝐸 do
5 for 𝑝 = 1 to 𝑁𝑝 do
6 𝜌

(

𝑠𝑖, 𝑎𝑗
)

←Use softmax strategy
(

𝑄𝑡
(

𝑠𝑖, 𝑎𝑗
)

, 𝑇
)

;
7 𝐴𝑡

𝑝 ←Select action with Q-Learning
(

𝜀, 𝜌
(

𝑠𝑖, 𝑎𝑗 , 𝑇
))

;
8 𝑖𝑛𝑑𝑖𝑡−1𝑝 ←Roulette selection of individual

(

𝑃𝑡−1, 𝐹𝑡−1
)

;

9 𝑖𝑛𝑑𝑖𝑡𝑝 ←Evolution Operation
(

𝑖𝑛𝑑𝑖𝑡−1𝑝 , 𝐴𝑡
𝑝

)

// A
combination of crossover and mutation operators;

10 𝑆𝑡
𝑝 ←Generate a plan

(

𝑖𝑛𝑑𝑖𝑡𝑝, 𝑇 , 𝑇𝑊
)

//Use Task Time
Window Selection Algorithm;

11 𝐹 𝑡
𝑝 ←Fitness Evaluation

(

𝑆𝑡
𝑝

)

by Eq. (7);
12 𝑅𝑡 ←Compute Reward

(

𝐹𝑡, 𝐹𝑡−1
)

by Eq. (18);
13 𝑄𝑡+1 ←Compute Q-values

(

𝑆𝑡, 𝐴𝑡, 𝑅𝑡, 𝛼, 𝛾
)

;
14 𝑡 ← 𝑡 + 1;
15 𝑛𝑢𝑚_𝑒𝑣𝑎𝑙 ← 𝑛𝑢𝑚_𝑒𝑣𝑎𝑙 + 1;
16 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡 ←Find the max fitness of current population

(

𝑃𝑡
)

;
17 if 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡 > 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑒𝑠𝑡 then
18 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑒𝑠𝑡 ← 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡;
19 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ← 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙;
20 else
21 if 𝑐𝑜𝑢𝑛𝑡 not equal to 𝑇ℎ𝑟𝑒 then
22 //Retain elite individuals
23 𝑃𝑡 ← Replace the individual of 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑖𝑑 with

𝑔𝑜𝑏𝑎𝑙_𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙;

24 if 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡 <= 𝑙𝑎𝑠𝑡_𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡 then
25 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1;
26 𝑙𝑎𝑠𝑡_𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡 ← 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡;

3.1. Reinforcement learning based genetic algorithm (RL-GA)

Evolutionary algorithms simulate the evolution process of biological
populations and find high-quality solutions to problems in the form of
population evolution. Population search brings a strong global search
capability to evolutionary algorithms, which ensures its performance in
solving large-scale complex problems.

The obvious disadvantage of evolutionary algorithms is that the
search results are extremely sensitive to the parameter configuration.
This feature makes many evolutionary algorithms have dependen-
cies on specific problems and scenarios. When problems or scenarios
change, parameters need to be adjusted or reset. The parameter tuning
process is time-consuming. According to the characteristics of the evo-
lutionary algorithm and reinforcement learning method, we design a
reinforcement learning-based genetic algorithm for the EDSSP problem.
Genetic algorithm has good global search ability, and it has a good
performance in the field of sequence optimization and scheduling, such
as traveling salesman problems, vehicle route planning problems, satel-
lite task scheduling problems, and many other problems. To improve
the local search ability of the genetic algorithm, we introduce the elite
individual retention strategy into the genetic algorithm. RL-GA uses a
Q-learning method to complete the evolution of the population. The
Q-learning method is responsible for selecting crossover and mutation
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Fig. 1. Dataflow between the RL method and GA.
operations. The population obtained by the RL-GA algorithm uses a task
time window selection algorithm (TTWSA) to complete the decoding
and generate the task execution plan. The profit obtained by the TTWSA
is used for the reward calculation and then the Q value update process.
In other words, TTWSA provides a basis for the learning method to
select new actions. The pseudo-code of the genetic algorithm based on
Q-learning is shown in Algorithm Table 2.

In RL-GA, 𝑐𝑜𝑢𝑛𝑡 is a parameter to control whether the algorithm exe-
cutes elite individual retention. When 𝑐𝑜𝑢𝑛𝑡 is equal to 𝑇ℎ𝑟𝑒 (Line 22),
elite individuals are no longer retained. Obtaining the task planning
scheme from the genetic algorithm needs to use the task time window
selection algorithm. The TTWSA can determine the tasks that can be
executed and determine the specific start time and end time. Fig. 1
shows the dataflow between the reinforcement learning method and
the genetic algorithm population search.

As shown in Fig. 1, the top row of the figure represents the GA
population evolution process, and the bottom row represents the Q-
learning algorithm choosing the operator, updating the state, etc. It can
be seen from the figure that there is a close connection between GA and
Q-learning method. The GA provides data input for the agent to select
actions, and the actions selected by the agent are used directly in the
population evolution.

3.1.1. Individual representation and initialization
The initialization method is the first step in the population search to

obtain a detection scheme. It needs to construct an initial solution in a
certain way and further search to find a higher-quality solution based
on the initial solution. In the RL-GA, individuals are encoded in real
numbers. For decoding, the RL-GA uses the task time window selection
algorithm to determine whether to execute each task according to the
order of tasks. If one task can be executed, the specific execution time
of the task will be determined. Otherwise, the task will be discarded.
Eventually, the scheme will be generated by arranging the tasks one
by one. The advantage of real number coding is to ensure the unique
correspondence between the elements at each position in the sequence,
and the decoding process is simple. Another benefit of this individual
representation method is that it effectively guarantees the legitimacy
of the solution structure without using any repair methods.

3.1.2. Fitness evaluation
Fitness evaluation method has two roles in the RL-GA algorithm,

one is to select individuals from the population, and the other is to
evaluate the reward and update state in the reinforcement learning
method. The fitness evaluation is obtained by calculating the objective
function value of each corresponding to the plan by Eq. (7). The method
for generating plans from individuals is introduced in Section 3.1.1.
5

Fig. 2. Schematic diagram of the short segment crossover.

3.1.3. Individual selection
Individual selection is the premise of population evolution. After

an individual is selected, the corresponding operation chosen by the
reinforcement learning method can be completed to obtain a new
individual. On the one hand, individual selection should make good
performers more likely to be successfully selected. On the other hand,
other individuals should also have a certain possibility of being selected
to ensure the diversity of the population. Therefore, we use a roulette
approach to select an individual in the RL-GA. The calculation formula
for selecting individuals by roulette is as follows.

𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑𝑁𝑝
𝑖=1 𝑓𝑖𝑡𝑖

(17)

where 𝑓𝑖𝑡𝑖 represents the fitness function value of individual. The
fitness function value is calculated using Eq. (7).

3.1.4. Crossover
The purpose of evolution is to improve the performance of indi-

viduals within a population. We use crossover and mutation operators
to search for good detection plans. For the crossover operation in the
RL-GA, we design seven crossover operators with various lengths and
heuristic rules, which are called short segment crossover operator (de-
noted as C1), medium segment crossover operator (denoted as C2), and
long segment crossover operator (denoted as C3), segment flip (denoted
as C4), foremost position crossover (denoted as C5), segment internal
order adjustment based on earliest available start time (denoted as C6),
fragment internal order adjustment based on task duration (denoted as
C7).

Short segment crossover operator (C1): Short segment crossover
refers to selecting two task sequence segments of length 𝐿 from an
individual and exchanging the positions of the two segments in the
individual. The schematic diagram of the short segment crossover is
shown in Fig. 2.

Medium segment crossover operator (C2): Medium segment
crossover refers to selecting two task sequence segments of length 2𝐿
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Fig. 3. Schematic diagram of the fragment flipping.

from an individual and swapping the positions of the two segments in
the individual.

Long segment crossover operator (C3): Long segment crossover
refers to selecting two task sequence segments of length 3𝐿 from an
individual and exchanging the positions of the two segments in the
individual.

Fragment flipping (C4): Fragment flipping is to select a task se-
quence fragment of length 𝐿 from an individual and rearrange the task
sequence from back to front. The schematic diagram of the fragment
flipping is shown in Fig. 3.

Foremost position crossover (C5): Select a task sequence segment
of length 𝐿 from an individual, and swap the segment with the task
sequence segment of the same length at the foremost position of the
individual.

Segment internal order adjustment based on earliest available
start time (C6): Select a task segment of length 𝐿 from an individual
and adjust the internal segment order from front to back according to
its task’s earliest available start time 𝑒𝑠𝑡𝑗 .

Segment internal order adjustment based on task duration
(C7): Select a task segment of length 𝐿 from an individual and adjust
the internal segment sequence from short to long according to the task
required duration 𝑑𝑢𝑟𝑗 .

3.1.5. Mutation
Compared with crossover, the variation degree of mutation is

smaller, which is also helpful for improving the search performance.
The mutation in RL-GA is performed by exchanging two positions in the
sequence. We combine the crossover operator and mutation operator to
complete the individual evolution of the population. After the evolution
process is completed, the fitness of offspring needs to be evaluated.
The TTWSA is used to generate a plan and the fitness value of each
individual is calculated by Eq. (7). In the RL-GA, the crossover and
mutation operators used for optimization are chosen by the Q-learning
method, and the operation used for individual evolution is selected
according to the Q value.

3.1.6. Reinforcement learning method
We adopt the Q-learning method to guide the search for an evolu-

tionary algorithm. Q-learning is a simple and effective reinforcement
learning method, which is widely used in various models such as DQN
and DRL according to the actions taken by the algorithm adaptive
decision-making according to the Q value [34,35]. Q-learning consists
of five parts: action, state, reward, learning algorithm, and environ-
ment, which can be represented as a quadruple of ⟨𝐴,𝑆,𝑅,𝐿,𝐸⟩[36].
The state of the agent indicates whether the fitness function value has
improved through the search, and is divided into two states, one with
improvement and the other without improvement or reduction. Such
a state representation can be associated with the improvement of the
population fitness value or can be combined with optional actions to
form a Q-table. In this way, the Q-table is simple and can be closely
integrated with the population evolution process. The actions represent
the combination of population search operators used, consisting of
several crossover and mutation operators.
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The Q-learning method selects the population update strategy
through the update of the Q value, which replaces the traditional oper-
ator selection method in the evolutionary algorithm. More specifically,
the agent selects the appropriate operator for population evolution
based on the Q-value and action selection strategy. The interaction
between the agent and the environment is evaluated by the reward
function. The reward value is closely related to the fitness value and
fitness improvement. The running process of Q-learning is shown in
Fig. 4.

As shown in Fig. 4, the RL-GA algorithm generates offspring after
each population evolution search using the operators decided by the
Q-learning method. And the task time window selection algorithm is
used to generate detection plans. The value of the fitness function can
be easily calculated based on the plan. The Q-learning method can
further obtain fitness improvement. The state will update according to
the fitness improvement.

The formula for calculating reward is shown below.

𝑅𝑡 = 𝐹𝑡
(

𝑆𝑡, 𝐴𝑡
)

− 𝐹𝑡−1
(

𝑆𝑡−1, 𝐴𝑡−1
)

(18)

where 𝐹𝑡 and 𝐹𝑡−1 are values of fitness at the time 𝑡 and 𝑡 − 1,
respectively.

The updated formula for the Q value is shown below.

𝑄𝑡+1
(

𝑆𝑡, 𝐴𝑡
)

= 𝑄𝑡
(

𝑆𝑡, 𝐴𝑡
)

+ 𝛼
(

𝑅𝑡 + 𝛾 max𝑎 𝑄
(

𝑆𝑡+1, 𝑎
)

−𝑄
(

𝑆𝑡, 𝐴𝑡
))

(19)

where 𝛼 is the learning rate, and 𝛾 is the discount factor.
An important part of Q-learning is the Q-value table, which records

the performance values of all crossover and mutation combinations
used in the search process. When the RL-GA algorithm contains 𝑛𝑐 kinds
of crossover operators and 𝑛𝑚 kinds of mutation operators, the total
number of actions contained in the Q-value table is 𝑛𝑐 × 𝑛𝑚 + 𝑛𝑐 + 𝑛𝑚. In
our proposed algorithm, there are 7 kinds of crossover operators and 1
kind of mutation operator. Therefore, the number of actions that each
agent can choose is 15. We set the state to two levels according to the
fitness function value improvement, which is higher (denoted as I) and
lower (denoted as II). In the proposed algorithm, the number of <state,
action> combinations is 30. For each agent, the probability of selecting
𝑎𝑗 action in state 𝑠𝑖 is usually determined by Softmax strategy:

𝜌
(

𝑠𝑖, 𝑎𝑗
)

= 𝑒𝑄𝑡
(

𝑠𝑖 ,𝑎𝑗
)

∕𝑇

∑𝑛
𝑗=1 𝑒

𝑄𝑡
(

𝑠𝑖 ,𝑎𝑗
)

∕𝑇
(20)

where 𝑄𝑡
(

𝑠𝑖, 𝑎𝑗
)

is the corresponding value in the Q table at time 𝑡, and
𝑇 is a control parameter.

Due to the large value of the objective function in the EDSSP prob-
lem, the introduction of a control parameter 𝑇 can effectively prevent
the probability value of individuals from being too large. Meanwhile,
the reinforcement learning method needs to balance the exploration
and exploitation of algorithm [10]. To prevent the algorithm from
falling into a local optimum that is difficult to jump out, we use a
parameter 𝜀 to regulate this process. When the randomly generated
probability value is less than 𝜀, a random evolution strategy is selected
to generate offspring.

3.1.7. Elite individual retention strategies
Since the EDSSP problem has a large solution space, we use an elite

individual retention strategy in the RL-GA to improve the convergence
performance. When the retention process occurs, the optimal individual
obtained by the search is retained in the next generation population.
The use of elite individuals will affect the global search ability of the
algorithm after a certain period of search. Therefore, we introduce a
parameter 𝑐𝑜𝑢𝑛𝑡 and a threshold 𝑇ℎ𝑟𝑒. When the current population
search is not improved compared to the previous generation popula-
tion, i.e., the maximum fitness value of the population does not change.
The parameter 𝑐𝑜𝑢𝑛𝑡 will increase by 1. If the value of parameter 𝑐𝑜𝑢𝑛𝑡
is equal to the threshold 𝑇ℎ𝑟𝑒, the elite individual is no longer retained.
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Fig. 4. Q-learning method decision-making process for EDSSP.
3.1.8. Termination
After a certain number of iterative searches, the RL-GA needs to

finish the search process and output the optimal result as the final
execution plan. Since we adopt the crossover and mutation operators
based on reinforcement learning, when the agent chooses an action,
it can correspond to one or two evolution operations. Therefore, it is
reasonable to use the evolution times 𝑛𝑢𝑚_𝑒𝑣𝑎𝑙 as the evaluation index
to record the iterative search. When the algorithm evolution times
reach the set maximum evolution times 𝑀𝐹𝐸, the algorithm search
process will be terminated.

3.2. Task time window selection algorithm (TTWSA)

When the task execution is determined through algorithm optimiza-
tion, the start time and end time of the task need to be determined.
The TTWSA algorithm tries to schedule the tasks in the best position
to obtain the maximum detection profit and adjusts the execution time
of the tasks according to the actual situation faced. The heuristic rules
used in the algorithm refer to the approach used in [31,37] and are
designed accordingly to the EDSSP problem. The setting of task start
time and end time not only affects the detection profit of the task
but also affects the satisfaction of constraints. We propose a two-stage
task time window selection algorithm with preliminary filtering and
then determine the execution time. The purpose of preliminary filtering
is to ensure that the task execution can meet the requirements of
constraints, such as angle, transition time, and others. Therefore, the
preliminary filtering needs to clip some time windows that do not meet
the constraints or discard the current time window and try to schedule
tasks in another time window. The basis of preliminary filtering is to
obtain the actual earliest actual available start time 𝐴𝐸𝑉 𝑇𝑖𝑗𝑜𝑘 and the
latest actual available end time 𝐴𝐿𝑉 𝑇𝑖𝑗𝑜𝑘. The preliminary filtering is
based on Eq. (10)–(12). The formulas of 𝐴𝐸𝑉 𝑇𝑖𝑗𝑜𝑘 and 𝐴𝐿𝑉 𝑇𝑖𝑗𝑜𝑘 are
shown as Eq. (21) and (22) respectively.

𝐴𝐸𝑉 𝑇𝑖𝑗𝑜𝑘 = max
{

𝑒𝑠𝑡𝑗 , 𝐸𝑉 𝑇𝑖𝑗𝑜𝑘
}

(21)

𝐴𝐿𝑉 𝑇𝑖𝑗𝑜𝑘 = min
{

𝑙𝑒𝑡𝑗 , 𝐿𝑉 𝑇𝑖𝑗𝑜𝑘
}

(22)

After the preliminary filtering, the algorithm can specify the start
time and end time of the task. Detection profit that can be obtained
follows the rule of first growing and then decreasing. To obtain more
profit, the detection process should ensure that the angle between the
antenna and the signal source is as small as possible. The time range
in which the algorithm chooses to execute the task should allow for
sufficient profit. Generally speaking, the change in the angle between
the satellite and the target in the time window can be regarded as a
symmetrical process. Therefore, the middle position of the time window
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is the best choice as an intermediate moment, which usually has the
smallest angle. And the start execution time and the task end time are
determined according to this intermediate moment. The formula for
calculating the best start time is as follows.

𝑏𝑠𝑡𝑖𝑗𝑜 =
(

𝐸𝑉 𝑇𝑖𝑗𝑜𝑘 + 𝐿𝑉 𝑇𝑖𝑗𝑜𝑘
)

∕2 − 𝑑𝑢𝑟𝑗∕2 (23)

𝑏𝑒𝑡𝑖𝑗𝑜 = 𝑏𝑠𝑡𝑖𝑗𝑜 + 𝑑𝑢𝑟𝑗 (24)

where 𝑏𝑠𝑡𝑖𝑗𝑜 represents the best start time of the execution task 𝑗 of
satellite 𝑖 on orbit 𝑜.

If this moment can meet the requirements of other constraints, it
will be regarded as the final start time; otherwise, move the execution
time backward or forward until all constraints are met. The pseudo-
code of the task time window selection algorithm is shown in the
Algorithm 2.
Algorithm 2: Task Time Window Selection Algorithm

Input: Task Set 𝑇 , Time Window 𝑇𝑊 , Detection Task
Sequence 𝑖𝑛𝑑𝑖𝑡𝑝

Output: Solution 𝑆𝑡
𝑖

1 foreach task 𝑡𝑖 in 𝑇 in the order in 𝑖𝑛𝑑𝑖𝑡𝑝 do
2 foreach time window 𝑡𝑤𝑗 in 𝑇𝑊 do
3 𝐴𝐸𝑉 𝑇𝑖𝑗𝑜𝑘 = max

{

𝑒𝑠𝑡𝑗 , 𝐸𝑉 𝑇𝑖𝑗𝑜𝑘
}

;
4 𝐴𝐿𝑉 𝑇𝑖𝑗𝑜𝑘 = min

{

𝑙𝑒𝑡𝑗 , 𝐿𝑉 𝑇𝑖𝑗𝑜𝑘
}

;
5 if (𝐴𝐿𝑉 𝑇𝑖𝑗𝑜𝑘 − 𝐴𝐸𝑉 𝑇𝑖𝑗𝑜𝑘) ≥ 𝑑 then
6 𝑏𝑠𝑡𝑖𝑗𝑜 ←Calculate the best start time by Eq. (23);
7 𝑏𝑒𝑡𝑖𝑗𝑜 ←Calculate the best end time by Eq. (24);
8 if 𝑏𝑠𝑡𝑖𝑗𝑜 < 𝐴𝐸𝑉 𝑇𝑖𝑗𝑜𝑘 then
9 𝑠𝑡𝑖𝑗𝑜 ← move backward to determine start time;
10 if 𝑏𝑒𝑡𝑖𝑗𝑜 > 𝐴𝐿𝑉 𝑇𝑖𝑗𝑜𝑘 then
11 𝑠𝑡𝑖𝑗𝑜 ← move forward to determine start time;
12 𝑡𝑤′

𝑗 , 𝑡𝑤
′′
𝑗 ←Update 𝑡𝑤𝑗 ;

13 𝑇𝑊 ← Add 𝑡𝑤′
𝑗 and 𝑡𝑤′′

𝑗 into 𝑇𝑊 ;
14 𝑇𝑊 ←Omit 𝑡𝑤𝑗 from 𝑇𝑊 ;
15 Try to arrange next task 𝑡𝑖+1;
16 else
17 Turn to next time window 𝑡𝑤𝑗+1;

4. Performance evaluation of proposed algorithm

4.1. Experimental settings

The configuration of the experiment in this paper is Core I7-7700

3.6 GHz CPU, 16 GB memory, Windows 11 operating system desktop
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Table 1
Initial orbital parameters of two satellites.

Satellite 𝑎 𝑒 𝑖 𝜔 𝜑 𝑚

No. 1 7000 0.00015 97.672 0 21.75 158.25
No. 2 7000 0.00015 97.672 0 51.75 128.25
. . . . . . . . . . . . . . . . . . . . .

computer, and Matlab 2020a is used for coding. All algorithms are run
under the same system configuration.

We use a series of Chinese satellites for our experiments. The
satellite orbit parameters can be defined by a hexagram: the length of
semi-major axis (𝑎), eccentricity (𝑒), inclination (𝑖), argument of perigee
(𝜔), right ascension of the ascending node (𝜑), and mean anomaly (𝑚).
Table 1 gives the initial orbital parameters of two satellites.

We use AGI Systems Tool Kit (STK) 11.2 to generate the task
and time window data needed for scheduling. The task distribution
is randomly generated on a global scale. The planning time horizon
of the tasks is all within one day. For a detection task, the duration
follows a uniform distribution in the interval [10, 100] seconds, and the
mission requires a maximum time horizon of 12 h to execute. Each
task is completed with only one detection activity by satellite. When
the bandwidth used by the satellite is set to 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ1, 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ2,
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ3, 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ4, and 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ5, the signal gains obtained
obey a uniform distribution in the intervals [1, 3], [4, 6], [7, 9], [10, 12],
and [13, 15], respectively.

To verify the effect of our proposed algorithm. We choose an im-
proved genetic algorithm (IGA) [38], an adaptive large neighborhood
search algorithm (ALNS/TPF) [39], an artificial bee colony algorithm
(ABC) [40], and a construction heuristic algorithm (CHA) as state-of-
the-art algorithms. The IGA algorithm adopts a heuristic mechanism
and uses knowledge to guide the algorithm search. The ALNS/TPF al-
gorithm combines tabu search and adaptive large neighborhood search
algorithm to find high-quality solutions through destruction and repair.
The ABC algorithm search solution space (also known as nectar sources)
through three types of bees, imitating the way bee populations search.
The CHA algorithm gives the planned task sequence according to the
way of sorting the task profit. The above four algorithms have a large
number of applications in satellite task scheduling problems and other
planning problems and have good performance.

The evaluation times 𝑀𝐹𝐸 of all algorithms were set to 5000 times.
The control parameter 𝑇 of RL-GA is set to 1000, the initial learning
rate 𝛼 is set to 0.01, the discount factor 𝛾 is set to 0.95, the threshold
𝑇ℎ𝑟𝑒 is set to 100, the length 𝐿 is 2 and 𝜀 is 0.01. The crossover
probability of the IGA algorithm was set to 0.9, and the mutation
probability was set to 0.1. The initialized score of ALNS/TPF is 100,
and the increased scores according to performance are 50, 20, and 10,
respectively, and the tabu list length is 10. The population size 𝑁𝑝 of
RL-GA, IGA, and ABC are all set to 10.

We design four scale instances, named small-scale (100–300 tasks),
medium-scale (400–600 tasks), large-scale (700–800 tasks), and ultra-
large-scale (1000–1400 tasks). Each instance is marked in the form
of ‘‘A-B’’, ‘‘A’’ represents the number of tasks, and ‘‘B’’ represents the
internal number of the instance under that number. Detection tasks
are randomly distributed around the world. Each algorithm was run
30 times on an instance. The detection profit of the task sequence is
the basis for the algorithm evaluation. For the evaluation benchmark
metrics, we separately count the maximum (denoted as Best), mean
(denoted as Mean), and standard deviation (denoted as Std. Dev.) of the
obtained results. We also use the Wilcoxon rank sum test to determine
whether there is a significant difference between the search results of
different algorithms, and the significance level is chosen as 𝑝 = 0.05.
In addition, the CPU time and convergence speed of the algorithm are
8

also used to evaluate algorithms.
4.2. Results

4.2.1. Evaluation of scheduling performance
The results of the small-scale instances are shown in Table 2. From

the results, it can be seen that the profit gap between the proposed
algorithm and the state-of-the-art algorithm increases with the increase
of the problem scale. There is no difference in the results between all
five algorithms except for the maximum profit for 100 tasks. When the
task scale increases to 200, the gap between the algorithms becomes
significant. It is worth noting that when the task scale is increased to
300, the maximum benefit that can be obtained from the search does
not increase in multiples of the task scale. This means that the influence
of constraints on task scheduling increases, and some tasks that violate
constraints cannot be executed.

The experimental results for medium and large-scale instances are
shown in Table 3. In the vast majority of instances, our proposed RL-
GA algorithm achieves the largest detection profit. The gap between the
proposed algorithm and other algorithms is obvious. According to the
mean and standard deviation, it can be seen that the RL-GA algorithm
has a good average performance in multiple runs, and the algorithm
has good stability. It is worth mentioning that the HA algorithm with
a simple structure can also search for a high-quality detection task
execution plan.

The experiments of ultra-large-scale instances can more effectively
reflect the solving ability of the algorithm in the case of complex
constraints and large solution space. As shown in Table 4, the ultra-
large-scale scheduling problem effectively utilizes the advantages of
reinforcement learning in the RL-GA. It can change the strategy se-
lection to allow the algorithm to try new search spaces continuously.
Meanwhile, the elite individual retention strategy improves the local
search ability of the algorithm. The performance of the other four
algorithms is relatively close on the whole, and ABC performs better
than other state-of-the-art algorithms in most cases.

In addition, we also use the traditional genetic algorithm and an
improved genetic algorithm called the GA_ELUMS algorithm to test the
problem-solving ability for ultra-large-scale instances, and the results
are shown in Table 5.

From Table 5, it can be seen that the RL-GA algorithm has better
planning performance compared with the traditional GA algorithm and
the GA_ELUMS algorithm [41]. The GA_ELUMS algorithm uses a series
of improved strategies containing initialization, crossover, variation,
and individual selection, but these strategies are not strong enough to
learn and it is difficult to adjust the search strategy by the information
obtained from the search. In contrast, the Q-learning method in the
RL-GA algorithm dynamically decides on the operations throughout
the population evolution process. This learning method can effectively
improve the algorithm’s ability to search the problem solution space.

More intuitively, the algorithm results of 300–4, 600–4, 800–4,
and 1400–4 running 10 times are shown. The results are shown in
Figs. 5(a)–5(d). As can be seen from the figure, the RL-GA algorithm
can maintain good stability while obtaining high profit.

4.2.2. Convergence analysis
Figs. 6(a)–6(d) show the convergence speed of different algorithms

at 300, 600, 800, and 1400 task scales, respectively. In a small-scale
instance, when the number of fitness evaluations reaches 3000, the
performance of the algorithm is no longer improved. When the task
scale is larger, more search algebras are required for the algorithm
to converge. Compared with the compared state-of-the-art algorithms,
the RL-GA algorithm has a faster algorithm convergence speed and can

exploit continuously.
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Fig. 5. Results of 10 runs of instances.

Fig. 6. Convergence curves of different scale instances.



Swarm and Evolutionary Computation 77 (2023) 101236Y. Song et al.
Table 2
Scheduling results for small-scale instances.

Instance RL-GA IGA ALNS/TPF ABC CHA

Best Mean(Std. Dev.) Best Mean(Std. Dev.) Best Mean(Std. Dev.) Best Mean(Std. Dev.)

100-1 823 820(1.19) 823 819.6(1.55)= 823 817.5(2.89)= 823 819.07(1.46)= 790
100-2 801 801(0) 801 801(0)= 801 801(0)= 801 801(0)= 801
100-3 813 813(0) 813 813(0)= 813 813(0)= 813 813(0)= 813
100-4 787 787(0) 787 787(0)= 787 787(0)= 787 787(0)= 787
200-1 1657 1629.07(5.82) 1617 1604.77(12.62)- 1616 1601.77(8.34)- 1618 1607.33(5.93)= 1513
200-2 1499 1493.4(3.23) 1494 1487.6(3.81)- 1490 1484.87(3.29)- 1498 1489.6(3.62)= 1406
200-3 1615 1603.5(4.81) 1599 1589.5(6.53)- 1604 1588.5(5.15)- 1603 1592.7(5.12)- 1456
200-4 1732 1713.17(6.26) 1702 1691.3(9.83)- 1711 1692.27(8.19)- 1706 1694.17(6.45)- 1598
300-1 2180 2149.67(8.36) 2091 2071.97(16.73)- 2086 2066.93(9.47)- 2111 2080.4(11.4)- 1869
300-2 2211 2159.6(9.75) 2111 2078.83(17.14)- 2107 2078.5(13.83)- 2111 2090.4(12.3)- 1811
300-3 2145 2111.5(10.32) 2057 2033.13(23.22)- 2052 2033.9(11.16)- 2062 2042.67(11.03)- 1773
300-4 2160 2122.47(8.94) 2087 2065(15.27)- 2098 2066.2(13.3)- 2112 2074.77(11.94)- 1826
Table 3
Scheduling results for medium-scale and large-scale instances.

Instance RL-GA IGA ALNS/TPF ABC CHA

Best Mean(Std. Dev.) Best Mean(Std. Dev.) Best Mean(Std. Dev.) Best Mean(Std. Dev.)

400-1 3130 3110.8(5.96) 3092 3079.17(6.31)- 3097 3080.47(7.7)- 3103 3087.87(6.64)- 2906
400-2 3052 3035.17(5.59) 3017 3000.4(6.93)- 3014 2993.47(8.15)- 3016 3003.07(6.27)- 2881
400-3 3069 3057.93(5.53) 3056 3045.17(5.83)- 3058 3046.37(5.79)- 3058 3047.97(3.93)= 2917
400-4 3223 3215.57(6.77) 3211 3196.97(6.77)- 3212 3196.9(8.16)- 3217 3201.83(6.4)- 3101
500-1 3985 3953.67(8.28) 3928 3893.93(11.1)- 3911 3888.43(10.97)- 3921 3901.53(9.27)- 3651
500-2 3702 3663.6(10.12) 3625 3592.23(11.56)- 3632 3592.13(14.09)- 3627 3598.83(12.61)- 3322
500-3 3635 3598.27(10.76) 3540 3508.93(11.49)- 3548 3509.43(16.05)- 3547 3522.07(12.43)- 3284
500-4 3932 3910.63(10.52) 3851 3831.97(11.5)- 3881 3827.7(15.6)- 3866 3837.53(14.56)- 3539
600-1 4367 4303.67(11.85) 4224 4191.93(15.74)- 4214 4186.63(14.98)- 4237 4208.67(10.65)- 3758
600-2 4414 4369.47(10.72) 4297 4237(19.41)- 4297 4233.33(18.75)- 4276 4250.5(13.06)- 3847
600-3 4378 4328.2(9.35) 4234 4212.7(11.48)- 4244 4207.97(13.62)- 4269 4233.87(15.65)- 3801
600-4 4144 4099.03(12.33) 4020 3987.03(14.49)- 4012 3981.77(14.51)- 4038 3997.97(16.02)- 3641
700-1 4895 4801.67(16.66) 4698 4651(19.89)- 4697 4647.17(24.65)- 4695 4665.47(19.86)- 4133
700-2 4793 4730.93(11.28) 4623 4588.5(14.47)- 4612 4584.8(15.12)- 4647 4605.23(16.4)- 4061
700-3 4636 4572.43(17.76) 4483 4443.03(20.48)- 4505 4440.33(23.8)- 4486 4457.33(13.53)- 3974
700-4 4969 4900.33(18.54) 4814 4758.07(20.54)- 4796 4747.43(21.92)- 4811 4768.87(18.78)- 4334
800-1 4841 4778.2(20.59) 4642 4581.8(29.58)- 4620 4573.77(25.55)- 4667 4613.23(23.35)- 3815
800-2 4996 4928.03(20.85) 4785 4731.8(20.94)- 4807 4728.27(27.91)- 4838 4769.17(27.16)- 4126
800-3 5110 4993.37(19.8) 4885 4835.5(23.71)- 4870 4824.9(23.43)- 4908 4859.33(21.19)- 4171
800-4 5055 4947.07(22.68) 4829 4775.5(23.46)- 4819 4763.43(24.58)- 4884 4801.6(24.58)- 4153
Table 4
Scheduling results for ultra-large-scale instances.

Instance RL-GA IGA ALNS/TPF ABC CHA

Best Mean(Std. Dev.) Best Mean(Std. Dev.) Best Mean(Std. Dev.) Best Mean(Std. Dev.)

1000-1 8003 7939.33(15.24) 7832 7803.6(17.28)- 7884 7806.73(24.29)- 7886 7829.07(24.23)- 7431
1000-2 7821 7788.6(16.31) 7733 7691.93(16.59)- 7726 7686.53(18.95)- 7737 7706.93(22.45)- 7353
1000-3 7907 7882.27(13.95) 7852 7816.6(13.34)- 7848 7811.9(17.65)- 7867 7829.2(14.66)- 7565
1000-4 8091 8045.57(14.01) 7993 7938.73(20.21)- 7977 7924.4(19.31)- 7983 7947.17(18.91)- 7616
1100-1 8452 8401.7(17.73) 8322 8284.2(18.31)- 8331 8286(23.03)- 8345 8307.53(19.45)- 7970
1100-2 8718 8649.27(18.72) 8502 8464.53(18.83)- 8543 8474.6(28.35)- 8541 8496.87(19.98)- 7809
1100-3 8830 8778.8(18.52) 8674 8636.63(20.98)- 8671 8631.87(20.41)- 8709 8658.53(18.86)- 8057
1100-4 8576 8509.63(16.37) 8424 8382.83(18.39)- 8446 8380.1(21.41)- 8460 8406.17(20.77)- 7983
1200-1 9271 9179.4(26.41) 9054 8975.2(29.84)- 9031 8975.1(30.17)- 9044 9008.77(22.43)- 8468
1200-2 9039 8958.4(28.03) 8823 8745.73(31.82)- 8794 8740.6(27.28)- 8835 8783.57(28.94)- 8195
1200-3 9302 9247.5(19.11) 9060 9014.97(22.36)- 9125 9029.67(36.57)- 9143 9054.77(26.07)- 8403
1200-4 9234 9170.83(16.59) 9017 8966.17(26.24)- 9021 8959.9(29.98)- 9046 9001.67(20.74)- 8177
1300-1 9566 9491.67(24.62) 9325 9253.53(26.62)- 9336 9261.87(34.15)- 9404 9307.53(32.39)- 8439
1300-2 9421 9358.4(17.76) 9202 9144.87(25.91)- 9190 9141.27(26.52)- 9220 9181.03(20.5)- 8595
1300-3 9376 9294.5(17.41) 9146 9070.37(27.25)- 9136 9072.97(32.7)- 9146 9098.17(19.74)- 8543
1300-4 9389 9309.63(27.44) 9150 9105.93(22.93)- 9189 9109.33(30.38)- 9201 9142.07(26.67)- 8384
1400-1 9634 9533.1(33.86) 9328 9260(38.23)- 9373 9253.37(42.43)- 9358 9301.63(36.76)- 8456
1400-2 10105 10034.5(28.55) 9867 9755.37(34.76)- 9838 9759.57(44.35)- 9886 9794.33(30.85)- 8738
1400-3 9793 9699.1(25.56) 9552 9453.5(35.55)- 9536 9454.33(36.9)- 9579 9501(29.87)- 8522
1400-4 9764 9589.5(26.46) 9422 9342.33(34.25)- 9401 9335.23(31.72)- 9450 9381.57(30.17)- 8458
4.2.3. CPU time analysis
We make statistics on algorithms’ CPU time. The results in Table 6

are the meantime results. It can be seen from the results that the in-
crease in time mainly comes from the increase in problem scale, and the
time used for task time window selection increases significantly. When
10

the task scale is small, the running time of the proposed algorithm is
not dominant due to the existence of a series of operations of Q value
calculation and action selection. When the task scale increases, the
task sequence generated by the RL-GA algorithm in the front position
has a high possibility of being successfully scheduled. When the time
window resource cannot be scheduled, the task time window selection

algorithm will not be run to try to schedule. So the computational
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Table 5
Comparison results with traditional GA and GA_ELUMS.

Instance RL-GA Traditional GA GA_ELUMS

Best Mean(Std. Dev.) Best Mean(Std. Dev.) Best Mean(Std. Dev.)

1000-1 8003 7939.33(15.24) 7852 7784.07(22.44)- 7884 7838.47(17.97)-
1000-2 7821 7788.6(16.31) 7732 7677.9(21.43)- 7740 7708.6(17.54)-
1000-3 7907 7882.27(13.95) 7831 7801.53(17.25)- 7857 7831.97(19.77)-
1000-4 8091 8045.57(14.01) 7953 7912.1(20.35)- 7987 7953.37(16.34)-
1100-1 8452 8401.7(17.73) 8357 8271.37(26.34)- 8350 8307(17.78)-
1100-2 8718 8649.27(18.72) 8494 8442.57(24.25)- 8568 8500.63(23.07)-
1100-3 8830 8778.8(18.52) 8660 8615.1(19.81)- 8707 8667(19.2)-
1100-4 8576 8509.63(16.37) 8412 8361.33(24.02)- 8445 8405.77(17.33)-
1200-1 9271 9179.4(26.41) 9048 8961.9(33.16)- 9080 9020.13(25.91)-
1200-2 9039 8958.4(28.03) 8822 8732.57(34.24)- 8846 8790.63(30.02)-
1200-3 9302 9247.5(19.11) 9064 9003.97(28.18)- 9136 9067.43(28.53)-
1200-4 9234 9170.83(16.59) 9027 8950.7(32.27)- 9073 9015.8(23.49)-
1300-1 9566 9491.67(24.62) 9306 9229.23(29.77)- 9368 9304.37(26.95)-
1300-2 9421 9358.4(17.76) 9196 9132.87(28.75)- 9272 9201.13(26.26)-
1300-3 9376 9294.5(17.41) 9143 9030.8(37.1)- 9170 9110.6(26.66)-
1300-4 9389 9309.63(27.44) 9167 9090.6(33.94)- 9210 9147.4(22.58)-
1400-1 9634 9533.1(33.86) 9291 9235.37(34.16)- 9381 9312.7(34.48)-
1400-2 10105 10034.5(28.55) 9790 9724.87(35.96)- 9875 9815.73(29.2)-
1400-3 9793 9699.1(25.56) 9512 9436.17(41.77)- 9591 9513.97(32.25)-
1400-4 9764 9589.5(26.46) 9476 9324.37(45.95)- 9427 9391.4(27.52)-
Table 6
Mean CPU time(s) for ultra-large-scale instances.

Instance RL-GA IGA ALNS/TPF ABC

1000-1 2.54 2.53 2.55 6.54
1000-2 2.67 2.73 2.72 6.50
1000-3 2.61 2.57 2.58 6.19
1000-4 2.55 2.68 2.67 6.27
1100-1 2.92 3.02 3.01 7.27
1100-2 2.89 2.99 2.98 7.14
1100-3 2.91 2.92 2.94 6.90
1100-4 2.90 2.90 2.92 7.03
1200-1 3.21 3.28 3.32 8.08
1200-2 3.34 3.35 3.46 8.27
1200-3 3.40 3.64 3.52 8.94
1200-4 3.28 3.35 3.32 8.68
1300-1 3.79 4.03 3.96 9.47
1300-2 3.66 3.77 3.75 9.14
1300-3 3.54 3.65 3.61 9.38
1300-4 3.46 3.59 3.56 8.82
1400-1 4.12 4.19 4.18 10.82
1400-2 4.00 4.10 4.05 10.84
1400-3 4.21 4.26 4.40 10.78
1400-4 4.10 4.34 4.41 11.54

resources consumed by the reinforcement learning in the algorithm can
be ignored. It is not difficult to find that the ABC algorithm takes a
lot of time, which is closely related to the complex division of labor
within the population and the interaction of bees’ search information.
Since the environment of practical problems is often very complex, and
the task scale is large, the proposed algorithm is competent for task
scheduling.

It can be seen from the above experiments that RL-GA achieves
better results than other comparison algorithms in terms of profit,
stability, convergence speed, and CPU time. From the perspective
of problem scale, the RL-GA algorithm has a good performance on
large-scale problems, but its time advantage is not obvious in small-
scale problems due to its Q-value evaluation and selection mechanism.
From the statistical test results of the above experiments, there is a
significant difference between the RL-GA algorithm proposed and other
comparison algorithms at the level of 𝑝 = 0.05 in the majority of
instances.

4.2.4. Strategy comparison analysis
Afterward, we examine whether the elite individual retention strat-
11

egy can play a role in the RL-GA algorithm. We select four instances
under the task scale of 300, 600, 800, and 1400 to compare the RL-
GA algorithm and the RL-GA algorithm (donated as RL-GA/WE) after
removing the elite individual retention strategy. The average results of
returns are shown in Figs. 7(a), 7(b), 7(c), and 7(d), and it can be seen
that the elite individual retention strategy makes sense for RL-GA. The
RL-GA algorithm that contains an elite individual retention strategy can
always achieve higher profit.

In the following, we will use a case study to verify the performance
of the RL-GA algorithm in a real project.

4.2.5. Case study
The satellite scheduling system contains a central node and several

user nodes, where the user nodes are responsible for submitting ap-
plications and the central node deploys mission planning software for
generating execution plans. After the user applies, the central node will
pre-process it based on a series of information such as location, satellite
orbit, and other requirements. The pre-processing will remove dupli-
cate tasks, merge similar tasks, and split tasks that cannot be detected
at once. Preprocessing also calculates the visible time window of each
task. Once the preprocessing is complete, the input data needed for
scheduling is obtained, including satellites, tasks, and time windows.

The satellite scheduling system tends to use a week as a scheduling
cycle. We use the RL-GA algorithm proposed in this paper to plan each
day’s tasks separately, obtain the execution plan for a single day, and
then accumulate to get the execution plan for the whole week. Here, we
let the system plan 1000 tasks per day, and the scheduling results are
shown in Fig. 8(a). The task completion rate is also a factor considered
in practical applications, and the successful task execution rate for each
day is given in Fig. 8(b).

As shown in Fig. 8, the satellite scheduling system obtains a steady
daily profit and less than 10% of the tasks cannot be completed. After
generating the plan, the satellite scheduling system will check the
correctness of the generated solution and pass the test by generating
satellite commands to the satellites that need to execute tasks through
ground stations. The satellite will execute each task according to the
start and end time set in the plan and transmit the data obtained
to the ground station through data downlink. The data is processed
accordingly and distributed to the user who submitted the request. The
processing flow of the satellite scheduling system is shown in Fig. 9.

From the above results, we can see that our proposed algorithm
can solve the EDSSP problem well and verify the effectiveness of the
algorithm from several aspects. the RL-GA algorithm not only can get
high-quality solutions but also can solve the problem quickly. Large-

scale instances and ultra-large-scale instances further prove the ability
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Fig. 7. Strategy comparison results of different scale instances.
Fig. 8. Scheduling results of the satellite scheduling system.
of the RL-GA algorithm to solve practical problems. The results of real
cases verify that the algorithm can maintain good planning perfor-
mance throughout the system’s multi-day operation and is available for
long-term use.

5. Conclusion

In this paper, we propose a reinforcement learning-based genetic
algorithm to solve the EDSSP problem. The genetic algorithm based on
reinforcement learning uses a new combination method of Q-learning
and GA algorithm, which allows the algorithm to select operators
autonomously through adaptive learning, giving the algorithm a strong
ability to adapt to different scenarios. The agent can choose effec-
tive actions based on the interaction with the environment during
the search process to improve search performance. The population
12
search process in the evolutionary algorithm is guided by reinforce-
ment learning, which allows each individual to select an appropriate
strategy according to the reward and Q value. We construct a <state,
action> combination method according to the search performance and
update the corresponding value after each evolution is completed.
The elite individual retention strategy also used in the algorithm can
improve search performance. It can be seen from the experiments that
our proposed algorithm has obvious advantages in solving the EDSSP
problem.

LA-GA effectively solves the EDSSP problem and enables the satel-
lite scheduling system to obtain a high-quality mission execution plan
in a short time. The proposed algorithm can effectively cope with the
increase in the number of satellites and tasks. In addition, the problem-
solving idea is also applicable to other combinatorial optimization
problems with order dependence.
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Fig. 9. Processing flow of the satellite scheduling system.
In future research, we will try to reduce the computational cost
of the Q-value evaluation mechanism to further accelerate the search
speed without affecting the performance of the algorithm. Other learn-
ing methods will also be considered, such as transfer learning, deep
learning, and others. In addition, we will consider applying learning-
based approaches to the online scheduling problem. This type of
scheduling problem has higher requirements for the algorithm.
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