
Advanced Engineering Informatics 58 (2023) 102209

1

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

Full length article

When architecture meets RL+EA: A hybrid intelligent optimization approach
for selecting combat system-of-systems architecture
Yang Huang a, Aimin Luo a,∗, Tao Chen a, Mengmeng Zhang a, Bangbang Ren a, Yanjie Song b

a Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha, China
b College of Systems Engineering, National University of Defense Technology, Changsha, China

A R T I C L E I N F O

Keywords:
SoSs
Architecture
Rule-based
Mission planning
Genetic algorithm
Task oriented
DQN

A B S T R A C T

In recent decades, various domains such as military, aerospace and supply chain are becoming increasingly
complex, forming system-of-systems (SoSs). The effectiveness of SoSs is mainly determined by their archi-
tecture, thus selecting proper architecture for SoSs is crucial to maximize their effectiveness. While most
studies focus on specific issues, such as mission planning and SoSs meta-architecture selection, few papers
deal with the two issues together. This paper introduces the task oriented SoSs architecture selection problem
(TSASP) and proposes an combination of reinforcement learning (RL) and evolutionary algorithm (EA) (CRE)
to address this problem. CRE comprises two layers: the inner layer utilizes a DQN-based algorithm to solve the
mission planning problem, and the outer layer with improved genetic algorithm optimizes the SoSs architecture
selection based on the output of inner one. A synthetic air and missile defense (AMD) example is conducted to
test the effectiveness of proposed method, and results show that CRE can improve the mission planning effect
by select a feasible architecture.
1. Introduction

A System-of-systems (SoSs) is defined as a network consisting of
various independent constituent systems that collaborate to provide ca-
pabilities beyond what the individual systems could achieve alone [1].
Examples of typical SoSs in real life include air transportation SoSs,
cyber–physical SoSs, spacecraft SoSs, combat SoSs, and C4ISR SoSs [2–
4]. The Combat System-of-systems (CSoSs) is a typical SoSs comprised
of various monolithic weapon platforms [5,6].

Inspired by civil engineering, the concept of architecture has been
introduced to the domain of System of Systems (SoS) engineering.
U.S. Department of Defense Architecture Framework (DoDAF) is widely
used to design SoS architecture [7]. Some researchers also encode a set
of decisions to represent architecture [8].

Traditional system design methods do not directly consider the
impact of resource combinations on mission planning, but in fact the
integration of resources will directly affect the effectiveness of mission
planning, this is because different resources will be subject to the
limitations of the communication capacity or the scope of the role of
the conditions of the mission cannot be synergized, which leads to the

∗ Corresponding author.
E-mail addresses: huangyangnudt@163.com (Y. Huang), amluo@nudt.edu.cn (A. Luo), kd_chentao@163.com (T. Chen), 18670381635@163.com

(M. Zhang), renbangbang11@nudt.edu.cn (B. Ren), songyj_2017@163.com (Y. Song).

system of the combat effectiveness of the situation is not ideal. The
research problem of this paper focuses on how to select the optimal
combination of resources to make the mission planning program the
most effective.

In the actual use of cases, for example, air defense and anti-missile
combat system in the number of information-guided signaling channels
is limited, only the first signaling channel to the resources of the
docking situation can be arranged before mission planning, so how to
allocate these signaling channels is a system-level problem.

Designers must consider the mission planning effect as the goal of
architecture selection [9]. Regardless the representation of architec-
ture, there are many possible solutions for architecture design. Adopt-
ing a proper CSoS architecture can improve the performance of the
CSoS. CSoS architecture selection problem concerns selecting appropri-
ate combat units to execute given mission with best efficiency.

Numerous research papers have addressed individual problems in
SoSs design, such as SoSs architecture design, command and control or-
ganizational structure optimization, and mission planning optimization
et al. [5,10,11], but few have focused on the combined optimization
474-0346/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.aei.2023.102209
Received 6 June 2023; Received in revised form 7 September 2023; Accepted 2 Oc
tober 2023

https://www.elsevier.com/locate/aei
http://www.elsevier.com/locate/aei
mailto:huangyangnudt@163.com
mailto:amluo@nudt.edu.cn
mailto:kd_chentao@163.com
mailto:18670381635@163.com
mailto:renbangbang11@nudt.edu.cn
mailto:songyj_2017@163.com
https://doi.org/10.1016/j.aei.2023.102209
https://doi.org/10.1016/j.aei.2023.102209
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2023.102209&domain=pdf


Advanced Engineering Informatics 58 (2023) 102209Y. Huang et al.
of the above problems. This paper aims to find a joint optimal CSoS
architecture, which break down the task oriented SoSs architecture
selection problem (TSASP) into two sub-problems: one is to find the
best task schedule for mission execution, and the other is to select
optimal portfolio of combat units. Both of them are NP-hard, and
require much computation to find optimal solution. Since the mission
planning problem is already NP-hard [12], this problem is also NP-hard.

Previous studies tried to solve the sub-problems separately sequen-
tially due to the limitation of the solution efficiency [10,11,13]. With
the application of reinforcement learning in the field of scheduling, the
process of scheduling can be greatly accelerated, and thus make nested
joint optimization possible. To decrease the computational complexity
of the problem, in the first place, it is essential to properly arrange
the hierarchy of mission planning problems and the System-of-systems
(SoSs) architecture selection problems. And efficient algorithms should
be designed to solve the mission planning problems, followed by using
the resulting plan to guide the optimization of the SoSs architecture [2,
14].

This paper presents a novel hybrid CSoS architecture selection
method that addresses two key challenges in this domain. To achieve
this, we propose a two-layer nested optimization algorithm that con-
siders the joint optimization of multiple objectives. Additionally, we
leverage the power of Deep Reinforcement Learning (DRL) to solve the
mission planning problem, thereby reducing the time cost of searching
for the optimal solution. By moving the search process to the training
stage, our approach enables the trained model to produce results in a
much smaller time, significantly improving search efficiency.

Contributions of the paper can be summarized as follows:

▶ Firstly, it proposes an optimization model for the System-of-
systems (SoSs) architecture selection problem. By integrating the
SoSs architecture selection process with the mission planning
process, the proposed model offers a practical solution to the task
oriented SoSs architecture selection problem.

▶ Secondly, this research introduces a genetic algorithm that is
specifically designed through an encoding scheme, crossover op-
erator, variation operator, and fitness function tailored for the
proposed problem.

▶ Lastly, this study proposes a mission planning algorithm based
on Deep Q-Networks (DQN). This algorithm offline learns task
selection rules and applies the acquired knowledge to expedite
the online mission planning process while ensuring solution ef-
fectiveness.

Overall, this research contributes to the field of SoSs architecture
selection by proposing an integrated model that considers system port-
folio constraints, a genetic algorithm that is customized to the problem
characteristics, and a mission planning algorithm that utilizes DQN to
speed up the scheduling process.

The rest of paper is organized as follows: Section 2 introduces
the related work. Section 3 describes the SoSs architecture selection
model. Section 4 proposes the task oriented SoSs architecture selection
algorithm. Section 5 experimentally verifies the effectiveness of the
proposed algorithm. Section 6 summarizes the content of the paper and
gives future research directions.

2. Related work

Most definitions of SoSs originate from Maier’s seminal work [1],
where they described SoSs as a set of components that can be con-
sidered individually as systems, these components are independently
operated and managed, and the components are usually able to emerge
through interactions between them with capabilities that are not avail-
2

able to the individual component members.
2.1. SoSs architecture selection method

The selection of SoSs architecture methods can be categorized into
several aspects, such as those based on meta-SoSs architecture the-
ory and model-based approaches. The summary of SoSs architecture
selection method is shown in Table 1.

In situations where constraints are relatively scarce, SoSs designers
typically opt for an optimal meta-architecture initially, and subse-
quently modify the specific SoSs architecture as additional constraints
arise. Lesinski et al. [15] have proposed a fuzzy genetic-based method
that facilitates the generation and evaluation of firepower capability
meta-SoSs architecture for non-linear sites. This methodology gener-
ates, evaluates, and selects the system meta-SoSs architecture in the
system through coupled executable models. Dagli’s research group [16]
utilized a genetic algorithm (GA) to select an SoSs meta-SoSs ar-
chitecture based on fuzzy evaluation of performance, flexibility, and
robustness. This approach enabled the development of an SoSs archi-
tecture tool that can be used to define, formulate, and solve a wide
range of socio-technical problems [23–25].

When domain models are used to model architecture, there are
numerous optimization methods available for selecting the appropriate
System of Systems (SoSs) architecture. Purohit et al. [17] proposed
a model-based approach for SoSs architecture and integration that
considers system-level dependencies. This approach utilizes inter-layer
and intra-layer dependency matrices and combines stochastic optimiza-
tion with heuristics to align modules in different layers. Problematic
interactions that may cause issues during system integration are iden-
tified, and integration is achieved accordingly. However, uncertainties
in individual interconnected systems can lead to significant risks of cas-
cading failure modes. To address this issue, Davendralingam et al. [18]
proposed a robust optimization approach that models the hierarchy of
operationally interdependent systems as nodes on a cohesive network.
Wang et al. [19] presented an optimal search algorithm for the SoSs
architecture space of equipment with uncertain capabilities from a
capability perspective. Sanduka et al. [20] investigated a model-based
system development approach with real-time requirements and SoSs
architecture model, timing requirements, and extensions to the DoDAF
and MODAF (UPDM) unified outline files extensions. They used mixed
integer linear programming (MILP) for optimization to meet real-time
requirements and injected the optimization results back into the UPDM
model. Kalawsky et al. [21] proposed an SoSs architecture selection
approach called Concise Modeling, which is used in conjunction with
SoSs architecture models to speed up the exploration and analysis of
SoSs architectures. However, the metrics optimized by these research
species SoSs architecture selection models are static nonfunctional or
functional metrics, with little evaluation of task execution effective-
ness. Accurate task-oriented performance measurement of the system
remains a challenge.

Organizational design serves as an intermediate link between Sys-
tem of Systems (SoSs) architecture and mission planning and is a crucial
aspect of architectural design. Meirina et al. [22] have proposed a
normative approach and computational methods to evaluate the ef-
fectiveness and efficiency of command and control (C2) organizations.
Their evaluation process is based on a normative model of team and in-
dividual decision-making in a C2 environment, which is quantitatively
represented by the organization, component systems, and tasks. This
approach provides valuable insights into the design of task oriented
SoSs architectures.

Levchuk et al. [13] have proposed a method for designing task-
based policies and heterogeneous organizational structures by explor-
ing information/command delivery and processing in organizations.
Their approach models the organization as a coupled 2-network struc-
ture, where the distribution and routing of information and com-
mand processing determine the organizational policy, and the informa-
tion and command networks (including their topology, communication

costs, and capacity constraints) determine the organizational structure.



Advanced Engineering Informatics 58 (2023) 102209Y. Huang et al.
Table 1
Summary of SoSs architecture selection method.

Reference SoSs model Optimization objective Algorithm C2 consideration

Lesinski, et al. [15] Meta-SoSs architecture Firepower capability Fuzzy genetic-based method N

AI-Amin, et al. [16] Meta-SoSs architecture Performance, flexibility,
robustness

Genetic algorithm N

Purohit, et al. [17] Model-based SoSs architecture Inter-layer and intra-layer
dependency matrices

Stochastic optimization with
heuristics

N

Davendralingam, et al. [18] Network model Robustness Robust optimization approach N

Wang, et al. [19] Super-network model Maximized expected rewards
and minimized cumulative
costs

Greedy search algorithm Y

Sanduka, et al. [20] UML and SysML model Real-time requirements Mixed integer linear
programming

N

Kalawsky, et al. [21] SysML model Expedite architecture
exploration and analysis

Concise Modeling optimization
method

N

Meirina, et al. [22] Normative model Effectiveness and efficiency / Y

Levchuk, et al. [13] Network model Topology, Communication
costs, and capacity constraints

Exploring information transfer
and processing in
organizations

Y

Levchuk, et al. [10] Network model Minimize the network
construction cost

Heuristic solution Y
This method provides valuable insights into the flow and landing points
of SoSs architecture selection.

In addition, Levchuk et al. [10] have considered complex, unpre-
dictable, and highly interdependent tasks that would overload the DMs
responsible for supervision. They propose a method for designing a
networked organizational structure that allows for horizontal autho-
rization, communication, and control flow between layers, and sharing
of component systems. This approach provides valuable insights into
the design of SoSs architectures to cope with complex task scenarios.

Overall, these studies demonstrate the importance of organizational
design in the development of effective and efficient SoSs architectures.
By utilizing normative approaches, computational methods, and net-
work structures, designers can gain valuable insights into the design of
task oriented and complex SoSs architectures [26–30].

2.2. Mission planning method

The summary of mission planning method is shown in Table 2.
In the domain of mission planning, Levchuk et al. [11] employed the
multidimensional dynamic list planning (MDLS) algorithm to tackle the
mission planning problem. Cheng et al. [18] addressed a more practical
scenario and integrated the MDLS algorithm with influence networks
to devise a novel priority rule list. Belfares et al. [31] utilized a multi-
objective tabu algorithm to resolve uncertain military mission planning
issues. Yu et al. [32] investigated the mission planning problem within
a holonic organization, considering the existing System of Systems
(SoSs) architecture situation. The proposed nested genetic algorithm
was able to cope with the military mission planning problem that is sub-
ject to uncertainty interference. These studies have contributed to the
advancement of mission planning by proposing innovative algorithms
and considering various practical scenarios.

There are various types of research in reinforcement learning aimed
at solving scheduling problems. The key aspect common to these studies
is the proposal of a suitable state representation and corresponding
actions, often utilizing rules as actions. For instance, Zhao et al. [33]
proposed a dynamic job-shop scheduling algorithm based on Deep Q
Network (DQN) to enhance the performance of adaptive scheduling
algorithms in dynamic manufacturing environments. Similarly, Luo
et al. [34] proposed a two-level deep Q network (THDQN) for online
rescheduling, optimizing total weighted delay and average machine
utilization. The higher-order DQN serves as a controller that determines
a temporary optimization goal for the lower-order DQN. The lower
3

DQN acts as an executor, selecting a suitable scheduling rule to achieve
the given goal. Tasse et al. [35] designed a meaningful and com-
pact state representation scheme and a novel reward function for the
job-shop scheduling problem, closely related to the sparse make-span
minimization criterion used by the combinatorial optimization problem
approach. Li et al. [36] proposed a hybrid deep Q-network for the
dynamic flexible job shop scheduling problem, using a shop flow state
model, decision points, generic state features, genetic programming-
based action spaces, and reward functions. Zeng et al. [37] addressed
the dynamic job-shop scheduling problem and proposed a flexible
hybrid framework, using an attention mechanism as a graph rep-
resentation learning module for state feature extraction and a deep
Q-network with double-decision replay priority and noise network. Du
et al. [38] studied the flexible job shop scheduling problem with time-
of-use tariff constraints and proposed a hybrid distribution estimation
algorithm with a deep Q-network for multi-objective optimization,
selecting state features to describe the scheduling situation in the deep
Q-network component, defining nine knowledge-based action refine-
ment scheduling schemes, and designing rewards based on these two
objectives.

As this paper endeavors to optimize both the System of Systems
(SoSs) architecture and the mission planning problem, it is recom-
mended that a reinforcement learning (RL) algorithm be employed
for the mission planning process, while a standard Evolutionary Com-
putation (EC) algorithm has the potential to effectively address the
architecture selection problem.

3. Problem formulation

This paper presents a novel approach to the task-oriented selection
of System of Systems (SoSs) architecture, referred to as the Task-
Oriented SoSs Architecture Selection Problem (TSASP). The TSASP aims
to design the optimal SoSs architecture that maximizes the mission
planning performance while adhering to the cost constraints of SoSs
architecture construction.

The initial subsection of this section outlines the methodology for
representing the SoSs architecture, while the subsequent subsection
presents a precise mathematical formulation for addressing the TSASP

problem.



Advanced Engineering Informatics 58 (2023) 102209Y. Huang et al.
Table 2
Summary of mission planning method.

Reference Research problem Optimization objective Method Problem scenario

Levchuk, et al. [11] Mission planning Mission completion time MDLS Static

Cheng, et al. [18] Flexible job-shop scheduling
problem

Mission completion time MDLS with influence networks Static

Belfares, et al. [31] Component systems allocation Maximize the usage of
component system

Tabu Search Static & uncertainty

Yu, et al. [32] Mission planning problem
under a holonic organization

Mission completion time Nested genetic algorithm Static & uncertainty

Zhao, et al. [33] Dynamic job-shop scheduling Minimize tardiness DQN Dynamic

Luo, et al. [34] Online rescheduling Total weighted delay and
average machine utilization

Two-level deep Q network
(THDQN)

Dynamic

Tasse, et al. [35] Job-shop scheduling problem Minimize make-span Reinforcement learning Static

Li, et al. [36] Dynamic flexible job shop
scheduling problem with
insufficient transportation
component systems

Minimize the make-span and
total energy consumption

Hybrid deep Q network Dynamic

Zeng, et al. [37] Dynamic job-shop scheduling Minimize make-span DQN with an attention
mechanism

Dynamic

Du, et al. [38] Flexible job shop scheduling
problem

Maximize completion time and
minimize total electricity price

Hybrid multi-objective
optimization algorithm of
estimation of distribution
algorithm and DQN

Static
3.1. SoSs architecture representation

This paper discusses the system of systems (SoSs) architecture as
a portfolio of component systems that work together to complete a
mission. The main constraint is the cost of selecting these component
systems, while the goal is to minimize the make span of mission
execution. To provide a visual representation of a task oriented SoSs
architecture, Fig. 1 presents a schematic diagram. Drawing inspiration
from the information age combat model, the SoSs architecture consists
of three basic elements: sensor (S), decider (D), and influencer (I),
with each component system representing one of these elements and
providing relevant capabilities to complete the mission.

To successfully complete a mission, it is necessary to decompose it
into a series of tasks, each of which is completed through a sequence of
operations. Each operation requires a specific component system that
meets the requirements of that operation. For example, in Fig. 1 the
‘S’ element is suitable for executing operation 1 of task N, while the
‘I’ element cannot be chosen to finish this operation due to its lack of
‘S’ capability. The mission execution effect is heavily influenced by the
execution logic of tasks, which are executed by different component
systems but must adhere to the task execution logical order. Therefore,
different component system portfolios will lead to different combat
mission effects.

As the mission planning process is closely related to the SoSs
architecture, the goal is to design an optimal SoSs architecture that
fits the mission planning process well. Based on the above analysis,
the variables of SoSs architecture selection should be the evolution
of component systems, with corresponding costs associated with each
chosen component system. The objective of SoSs architecture selection
is to minimize the task execution time of mission planning while
adhering to the constraint of SoSs architecture construction cost.

From the analysis presented above, it can be inferred that the
problem at hand can be transformed into a two-layer optimization
problem. The inner layer of this problem deals with optimizing the
task plan arrangement, while the outer layer deals with optimizing
the design of the System of Systems (SoSs) architecture. The outer
layer is dependent on the inner layer optimization results, owing to the
coupling of the SoSs architecture selection effect and the task execution
effect. If the SoSs architecture is optimized in parallel with the mission
4

planning process, instead of following a layered strategy, it may lead
to inconsistent optimization goals. Therefore, the SoSs architecture
selection problem is modeled as a two-layer optimization problem,
which can reflect the improvement of the task execution effect by the
SoSs architecture selection and optimize the system-level performance
indicators, making the mission planning and SoSs architecture selection
processes interrelated and independent.

3.2. Mathematical formulation for architecture selection

In this section, we present the mathematical model for the SoSs
architecture selection problem. To ensure scientific rigor, we first out-
line the hypothesis conditions that transform the complex practical
problem into a well-defined scientific problem. We then provide a
comprehensive list of all parameters and variables involved in the
SoSs architecture selection model. Table 3 contains the mathematical
symbols and descriptions of the SoSs architecture selection model.

The TSASP problem aims to optimize the composition of the system
in the SoSs architecture in order to achieve the highest possible effec-
tiveness in completing tasks. To account for the relationship between
SoSs architecture and mission planning,

While many external conditions can affect the result of the SoSs
architecture selection, the model is based on several assumptions to
avoid the influence of perturbations. These assumptions include:

(1) Knowledge of all operations for each task;
(2) Independence of tasks from each other;
(3) Non-interruptibility of tasks once started;
(4) Exclusion of component system failure;
(5) No distinction between component systems that can perform the

same operation;
(6) Component systems can immediately execute another operation

after completing the current operation.
In typical SoSs architecture, multiple tasks are addressed, each

corresponding to a set of operations that are completed by component
systems. Component systems can execute certain operations based on
their capability type, and each operation specifies a particular type
of component system to execute. Multiple component systems are
required to execute a task in sequence to achieve the task’s established
goal.

Suppose there are 𝑛 mutually independent tasks that constitute a set
{ }
of tasks 𝑇 = 𝑇1, 𝑇2,… , 𝑇𝑛 . Each task is represented by a sequence of



Advanced Engineering Informatics 58 (2023) 102209Y. Huang et al.
Fig. 1. Schematic diagram of the task oriented SoSs architecture.
Table 3
Symbols and variables.

Parameters Description

𝑇 Task set
𝑆 Component system set
𝑖 Task serial number
𝑗 Component system serial number
𝑆𝑖,𝑎 The component system set which can execute the 𝑎th operation of the 𝑖th task
𝑛𝑖 Number of operations for the 𝑖th task
𝑟𝑖,𝑎,𝑘 Release time for the 𝑎th operation of the 𝑖th task by component system 𝑘
𝑑𝑖,𝑎,𝑘 Termination time for the 𝑎th operation of the 𝑖th task by component system 𝑘
𝑤𝑖,𝑎,𝑘 Waiting time on component systems for the 𝑎th operation of the 𝑖th task
𝑝𝑖,𝑎,𝑘 Execution time on the component systems for the 𝑎th operation of the 𝑖th task
𝑁𝑇 Number of tasks
𝑁𝑆 Number of component system
𝑡𝑖,𝑎,𝑘 Time required to perform operation a of task 𝑖 by component system
𝑓𝑘 Cost for chosen component system 𝑘
𝐹 Total cost constrains

Variables Description

𝑐𝑖,𝑎,𝑘 Completion time on the component system for the 𝑎th operation of the 𝑖th task
𝑦𝑖,𝑎,𝑘 The number of operation that component system 𝑘 executes
𝐻 Set of all the chosen component systems

Decision variables Description

ℎ𝑘 Decision variable for indicate component system 𝑘 in the SoSs
𝑥𝑖,𝑎,𝑘 Decision variable for indicate component system selected to perform the 𝑎th operation of the 𝑖th task
𝑠𝑖,𝑎,𝑘 Start time on component system for the 𝑎th operation of the 𝑖th task
5



Advanced Engineering Informatics 58 (2023) 102209Y. Huang et al.
𝑛𝑖 operations, each of which has a release time 𝑟𝑖,𝑎,𝑘 and a termination
time 𝑑𝑖,𝑎,𝑘, where 𝑖 refer to 𝑖th task, 𝑎 refer to the 𝑎th operation, 𝑘
refer to 𝑘th component system. The operations within a task 𝑇𝑖 must
be completed within the specific release and termination times. The
operations must be executed in order from first to last, with no overlap
between them. Some of operations may have a waiting period 𝑤𝑖,𝑎,𝑘
before the operation can be started, following the completion of the
previous operation. Each operation must be completed on a specific
type of component system. The objective of our scheduling approach is
to determine an appropriate execution plan for these tasks.

The component systems selected by the System of Systems (SoSs)
are represented by the following equation:

ℎ𝑘 =
{

1, 𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠𝑦𝑠𝑡𝑒𝑚 𝑘 𝑖𝑠 𝑐ℎ𝑜𝑜𝑠𝑒𝑛 𝑏𝑦 𝑆𝑜𝑆𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

For the problem of mission planning, our focus is solely on the
impact of task completion time, also known as make span. To this end,
we have developed a corresponding mathematical model that considers
this crucial factor.

The objective function of our model is as follows:

𝛹 (𝐻) = min
{

max
(

𝑐𝑖,𝑎,𝑘
)}

,
∀𝑖 ∈ 𝑇 , 𝑘 ∈ 𝑆, 𝑎 ∈

{

1,… , 𝑛𝑖
}

, ℎ𝑘 = 1
(2)

In the mission planning problem, the primary objective is to min-
imize the task execution time, also known as the make span. This is
achieved by minimizing the largest task completion time through the
objective function. Specifically, 𝑖 refer to 𝑖th task, 𝑎 refer to the 𝑎th
operation, 𝑘 refer to 𝑘th component system, 𝑐𝑖,𝑎,𝑘 means the completion
time of the 𝑎th operation in the 𝑖th task. The goal is to identify an
optimized system-of-systems (SoSs) architecture that can significantly
reduce the mission execution time.

To achieve this objective, there are certain constraints that must be
considered. These constraints are critical in ensuring that the proposed
SoSs architecture is feasible and practical.

(1) Operation 𝑎 must be executed and completed within the desig-
nated execution window for task 𝑖.
𝑟𝑖,𝑎,𝑘 ≤ 𝑠𝑖,𝑎,𝑘, 𝑐𝑖,𝑎,𝑘 ≤ 𝑑𝑖,𝑎,𝑘,
∀𝑖 ∈ 𝑇 , 𝑘 ∈ 𝑆𝑖,𝑎, 𝑎 ∈

{

1,… , 𝑛𝑖
}

, ℎ𝑘 = 1
(3)

If component system 𝑘 is unable to execute operation 𝑎, the waiting
and execution times will be considered infinite.
𝑤𝑖,𝑎,𝑘 = +∞, 𝑝𝑖,𝑎,𝑘 = +∞
𝑖𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑗 𝑐𝑎𝑛𝑛𝑜𝑡 𝑑𝑜 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎,
∀𝑖 ∈ 𝑇 , 𝑎 ∈

{

1,… , 𝑛𝑖
}

(4)

Additionally, the operation must be completed after the preceding
operation to initiate the execution process.

𝑐𝑖,𝑎,𝑘 = 𝑠𝑖,𝑎,𝑘 + 𝑝𝑖,𝑎,𝑘 +𝑤𝑖,𝑎,𝑘,
∀𝑖 ∈ 𝑇 , 𝑘 ∈ 𝑆𝑖,𝑎, 𝑎 ∈

{

1,… , 𝑛𝑖
}

, ℎ𝑘 = 1
(5)

(2) To guarantee that subsequent activities are not initiated until
the completion of the previous activity, we have:

𝑐𝑖,𝑎,𝑘 ≤ 𝑠𝑖,𝑎+1,𝑘′ ,
∀𝑖 ∈ 𝑇 , 𝑎 ∈

{

1,… , 𝑛𝑖
}

, 𝑘 ∈ 𝑆𝑖,𝑎, 𝑘′ ∈ 𝑆𝑖,𝑎+1
(6)

(3) In order to ensure that each activity is executed by a single
component system, we have implemented a strict protocol.
∑

𝑘∈𝑆
𝑥𝑖,𝑎,𝑘 = 1,∀𝑖 ∈ 𝑇 , 𝑘 ∈ 𝑆𝑖,𝑎, 𝑎 ∈

{

1,… , 𝑛𝑖
}

(7)

(4) To prevent component systems from performing multiple ac-
tivities simultaneously, we have implemented a system that enforces a
one-activity-at-a-time rule.

𝑥𝑖,𝑎,𝑘 ⋅ 𝑐𝑖,𝑎,𝑘 ≤ 𝑥𝑖′ ,𝑎′ ,𝑘 ⋅ 𝑠𝑖′ ,𝑎′ ,𝑘,
∀𝑖 ∈ 𝑇 , 𝑖′ ∈ 𝑇 , 𝑘 ∈ 𝑆𝑖,𝑎, 𝑘 ∈ 𝑆𝑖′ ,𝑎′ , 𝑎 ∈

{

1,… , 𝑛𝑖
}

,
𝑎′ ∈

{

1,… , 𝑛𝑖′
}

, ℎ𝑘 = 1, 𝑥𝑖,𝑎,𝑘 = 1, 𝑥𝑖′ ,𝑎′ ,𝑘 = 1,
+

(8)
6

𝑦𝑖,𝑎,𝑘 = 𝑚, 𝑦𝑖′ ,𝑎′ ,𝑘 = 𝑚 + 1, 𝑚 ∈ 𝑁
Fig. 2. Inner layer mission planning problem.

Fig. 3. Outer layer SoSs architecture selection problem.

(5) To ensure that the cost constraint is not breached during
the selection process for the SoSs architecture, we have implemented
rigorous measures.
𝑁𝑆
∑

𝑘=1
ℎ𝑘 ⋅ 𝑓𝑘 ≤ 𝐹 , ℎ𝑘 ∈ {0, 1} ,∀𝑘 ∈ 𝑆 (9)

(6) The value range of the decision variables.

ℎ𝑘 ∈ {0, 1}, 𝑘 ∈ 𝑆𝑖,𝑎 (10)

𝑥𝑖,𝑎,𝑘 ∈ {0, 1} ,∀𝑖 ∈ 𝑇 , 𝑘 ∈ 𝑆𝑖,𝑎, 𝑎 ∈
{

1,… , 𝑛𝑖
}

(11)

𝑦𝑖,𝑎,𝑘 ∈ {0, 1},∀𝑖 ∈ 𝑇 , 𝑘 ∈ 𝑆𝑖,𝑎, 𝑎 ∈
{

1,… , 𝑛𝑖
}

(12)

𝑠𝑖,𝑎,𝑘 ∈ 𝑁,∀𝑖 ∈ 𝑇 , 𝑘 ∈ 𝑆𝑖,𝑎, 𝑎 ∈
{

1,… , 𝑛𝑖
}

(13)

4. Solution approach for SoSs architecture selection

This paper transformed the TSASP problem into a two-layer op-
timization problem containing two sub-problems: mission planning
problem and SoSs architecture selection problem, which in essence is
a Parallel machine scheduling problem (PMP) with constraints and a
Set Covering Problem (SCP), both of which are NP-hard. As a result,
the TSASP problem is also an NP-hard problem. To address this issue,
this paper proposes an SoSs architecture selection optimization method
based on a learning-based mission planning approach. The proposed
method consists of two parts: an outer layer SoSs architecture selection
algorithm and an inner layer DQN-based mission planning algorithm.
The schematic diagram of the solution framework are shown in Fig. 4.
The outer layer employs genetic algorithm to optimize the SoSs archi-
tecture solution, while the inner layer uses a reinforcement algorithm
to solve the mission planning problem. The two layers of algorithms
work cooperatively to solve the TSASP problem.

4.1. Two-layer optimization model transformation of the problem

As Fig. 2 shows, the inner layer optimization problem is essentially
a mission planning problem, where the inputs are the task list and
the current component system list. The goal of the mission plan-
ning problem is to find the task scheduling scheme that satisfies the
constraint of maximum task execution effectiveness. Each component
system has a set of attributes, such as time window and capabilities.



Advanced Engineering Informatics 58 (2023) 102209Y. Huang et al.
Fig. 4. Schematic diagram of the solution framework.
The optimization problem aims to arrange the component systems
for each operation to be executed, which needs to satisfy a series
of constraints. The sequence of operations to be executed needs to
satisfy the timing relationship in the operation. Only when the previous
operation has been executed can the current operation be executed,
and the component systems can only execute one operation at the same
time.

Fig. 3 shows the outer layer of the optimization problem: the SoSs
architecture selection problem, where the input is the cost constraint
of the SoSs architecture construction, and the goal is to maximize
the task execution effectiveness, which means the SoSs architecture
effectiveness is maximized.

Fig. 4 shows the proposed solution framework, which comprises
two layers. The outer layer is used to solve the SoSs architecture
selection optimization problem, while the inner layer is used to solve
the mission planning problem based on the current SoSs architecture.
This approach allows for quick feedback for the outer layer.

For small-scale problems, dynamic programming and exact solution
algorithms are solvable. However, as the problem size increases, the
computational cost becomes prohibitively high. Therefore, heuristic
algorithms and evolutionary algorithms are more adaptable to large-
scale task situations. Reinforcement learning is used for the inner
optimization problem as it speeds up the solution and makes nested
optimization acceptable in terms of time consumption.

The RL-based method proposed in this paper is interpretable,
thereby increasing the stability of the algorithm solution. For the outer
layer optimization problem, genetic algorithm are chosen as the exact
solution method cannot be used and reinforcement learning would lead
to excessive training costs. However, the effectiveness of the heuristic
algorithm depends largely on the selected heuristic strategy.

4.2. Outer layer SoSs architecture selection algorithm

The focus of this study is on addressing the design problem of
the System of Systems (SoSs) architecture structure. To this end, the
authors propose a novel outer layer evolution algorithm, referred to as
the SoSs architecture Evolution Algorithm (SAEA), which is designed
to optimize the SoSs architecture. The SAEA algorithm is evaluated
through multiple iterations, with each iteration requiring the deter-
mination of the adaptation value for each chromosome. This value is
obtained by executing the mission planning algorithm based on the
Deep Q-Network (DQN) algorithm. Essentially, the adaptation degree
for each chromosome is a measure of the task execution effectiveness
under the corresponding SoSs architecture configuration.
7

Fig. 5. Mission planning based on chosen SoSs architecture.

4.3. Inner layer DQN-based mission planning algorithm

The mission planning problem poses a significant challenge as it re-
quires simultaneous decision-making on execution component systems
and start execution time for each operation. Additionally, the problem’s
complexity is compounded by the presence of waiting time. The mission
planning problem based on the chosen SoSs architecture are shown in
Fig. 5.

The inner layer algorithm of the SoSs architecture selection algo-
rithm which is shown in Algorithm 1 addresses the mission planning
problem, with inputs including a list of tasks and component systems.
The latter refers to the architecture corresponding to the chromosomes
in the population of the outer layer genetic algorithm, which can be
decoded. The fitness function of the outer layer algorithm is determined
by the mission planning scheme, but the time required for solving the
problem with the genetic algorithm remains significant. To expedite
the solution process, this section proposes a mission planning algorithm
based on DQN, which leverages offline learning to enhance solution
efficiency without compromising effectiveness [39,40].



Advanced Engineering Informatics 58 (2023) 102209Y. Huang et al.
Algorithm 1: SoSs Architecture Evolution Algorithm (SAEA)
Input: number of genetic generations 𝑁 , number of populations 𝑁𝑃 , trained DQN network, crossover probability 𝛼, mutation probability

𝛽, list of tasks 𝑇 , component systems 𝑆
Output: Optimal SoSs architecture

1 Initialization of algorithm parameters;
2 Initializing the population;
3 Load the trained DQN network;
4 Generate initial population 𝑃0;
5 for 𝑡 = 1, ..., 𝑁 do
6 if 𝑟𝑎𝑛𝑑() ≤ 𝛼 then
7 𝑃 (𝑡 + 1) ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑃 (𝑡) , 𝐿, 𝛼)

8 if 𝑟𝑎𝑛𝑑() ≤ 𝛽 then
9 𝑃 (𝑡 + 1) ← 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑃 (𝑡 + 1) , 𝛽)

10 Execute the improved DQN algorithm for each individual in the population to obtain the planning scheme;
11 Calculate the fitness function value 𝐹 𝑖𝑡(𝑡 + 1) for each planning scenario;
12 𝑃 (𝑡 + 1) ← 𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒𝑤ℎ𝑒𝑒𝑙

(

𝑃 (𝑡 + 1) , 𝐹 𝑖𝑡(𝑡 + 1), 𝑁𝑃
)

;
13 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡_𝑓𝑖𝑡, 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑖 ← 𝐹 𝑖𝑡(𝑡 + 1);
14 if 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡_𝑓𝑖𝑡 > 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑒𝑠𝑡_𝑓𝑖𝑡 then
15 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑒𝑠𝑡_𝑓𝑖𝑡, 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑖 ← 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡_𝑓𝑖𝑡, 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑖
To improve efficiency while maintaining solution quality, this paper
proposes a mission planning algorithm based on DQN. The DQN-based
mission planning algorithm addresses two key aspects. First, as tasks
are continuously added, the mission planning scheme’s hidden state in-
formation becomes nearly infinite, which can lead to the ‘‘dimensional
explosion’’ problem. This issue is resolved by using the DQN method,
which fits the neural network to the Q values. Second, to avoid the
neural network from learning redundant information, feature vectors
are extracted from the mission planning scheme, and the Q values
corresponding to all operation selection rules in the current mission
planning scheme state can be obtained after the neural network. This
approach completes the evaluation of the state action once, ensuring
that the algorithm is efficient and effective.

4.3.1. Interaction design of mission planning process in MDP
Markov models require that the problems being modeled adhere

to the principle of Markovianity, which stipulates that if all historical
information is incorporated into a state at a given moment, the decision
made at the subsequent moment is solely dependent on the current
state. When modeling the mission planning process as a scheduling
operation at each decision step, the state at any given point is the
planning solution for the previously scheduled operation, thereby en-
suring that the decision solution is exclusively related to the current
state. Consequently, the states of this mission planning process are
Markovian, allowing for Markovian modeling.

A Markov process consists of a five-tuple 𝑀 = ⟨𝑆,𝐴, 𝑃 ,𝑅, 𝛾⟩ : where
𝑆 represents the set of states of the environment, 𝐴 represents the set of
actions of the intelligence, 𝑃 represents the state transfer probability,
𝑅 represents the reward function, and 𝛾 is the discount factor.

The mission planning problem’s MDP model is presented in Fig. 6.
The Q-network is trained with a substantial amount of data, and the
subsequent state is derived by selecting the appropriate action at each
decision step. The component system allocation algorithm is utilized
to assign component systems to the task sequence in that state, and
the fitness obtained serves as the reward value for updating the Q-
network. To prevent the training results from falling into local optima,
the stored historical state transfer dataset is sampled using empirical
replay. This enables the sampled data to be employed for network
learning. Moreover, the update strategy of the target value function
and the state value function is distinguished. The state value function
is updated at each step of the state transfer, while the target value
function is updated after a certain time step by assigning the parameters
of the state value function to the target value function. This approach
enhances the stability of the training process.
8

Fig. 6. MDP model for mission planning problem.

4.3.2. State space design based on the task execution state
The design of the state space is crucial in ensuring the reliability

and effectiveness of the Q-network. A well-defined state space should
express sufficient state information while minimizing the amount of
information required. This allows the algorithm to converge and select
action values that are consistent with the current actual state. To
achieve this, state features that reflect the overall mission planning
equilibrium should be selected. Additionally, the state space design
should be able to generalize the characteristics of different types of
mission planning problems.

In particular, the task execution efficiency of a component system
is dependent on the state of the entire system. Therefore, the state
space should be designed to capture the relevant characteristics of the
component system and the overall system. By doing so, the trained neu-
ral network can effectively cope with growing tasks. In summary, the
careful selection and design of the state space is essential in ensuring
the Q-network’s reliability and effectiveness in solving mission planning
problems. The states are calculated and described in Table 4.

To calculate the states in Table 4, some auxiliary quantity should be
calculate by the following equations. For example, the task execution



Advanced Engineering Informatics 58 (2023) 102209Y. Huang et al.

t
e

f
m

t
s

r
a
t
t

4

a
s
t
e
a

p
o
p
T
s
t
s
a

A
t
c
t

c
a

Table 4
Equations for calculating state.

State calculation equation Variable description

𝑈𝑅𝑆𝑎𝑣𝑒 (𝑡) =
∑𝑁𝑆

𝑗=1 𝑈𝑅𝑆𝑗 (𝑡)

𝑁𝑆
Average utilization of component system s

𝑈𝑅𝑆𝑠𝑡𝑑 (𝑡) =

√

∑𝑁𝑆
𝑗=1 (𝑈𝑅𝑆𝑗 (𝑡)−𝑈𝑅𝑆𝑎𝑣𝑒 (𝑡))2

𝑁𝑆
The standard deviation of component
system utilization

𝐶𝑅𝑇𝑎𝑣𝑒 (𝑡) =
∑𝑁𝑆

𝑖=1 𝑂𝐶𝑁𝑖 (𝑡)
∑𝑁𝑆

𝑖=1 𝑛𝑖
Average completion rate of operations

𝐶𝑅𝑇𝑎𝑣𝑒 (𝑡) =
∑𝑁𝑆

𝑖=1 𝐶𝑅𝑇𝑖 (𝑡)
𝑁𝑆

Average task completion rate

𝐶𝑅𝑇𝑠𝑡𝑑 (𝑡) =
√

∑𝑁𝑆
𝑖=1 (𝐶𝑅𝑇𝑖 (𝑡)−𝐶𝑅𝑇𝑎𝑣𝑒 (𝑡))2

𝑁𝑆
Standard deviation of task completion rate

𝑆𝐺𝑇 𝑙 (𝑡) = 𝑡 − min𝑆𝐿𝑇𝑗 The maximum value of component system
idle time

𝑆𝐺𝑇𝑎𝑣𝑒(𝑡) =
∑�̄�𝑆

𝑗=1 𝑆𝐿𝑇𝑗 (𝑡)

�̄�𝑆
Average of component system idle time

𝑆𝐺𝑇𝑠𝑡𝑑 (𝑡) =

√

∑�̄�𝑆
𝑗=1 (𝑆𝐿𝑇𝑗 (𝑡)−𝑆𝐺𝑇𝑎𝑣𝑒 (𝑡))2

�̄�𝑆
The standard deviation of component
system idle time

𝑆𝐺𝑇 𝑠 (𝑡) = 𝑡 − max𝑆𝐿𝑇𝑗 The minimum difference in component
system idle time

𝑆𝐺𝑇 𝑙𝑎 (𝑡) = 𝑆𝐺𝑇𝑎𝑣𝑒 (𝑡)
𝑆𝐺𝑇 𝑙(𝑡)

Component system idle time average to a
maximum ratio

𝑆𝐺𝑇 𝑠𝑎 (𝑡) = 𝑆𝐺𝑇 𝑠(𝑡)
𝑆𝐺𝑇𝑎𝑣𝑒 (𝑡)

Minimum to average ratio of component
system idle time

𝑆𝐺𝑇 𝑙𝑎𝑗 (𝑡) =
𝑆𝐺𝑇 𝑠(𝑡)
𝑆𝐺𝑇 𝑙(𝑡)

The ratio of minimum to maximum
component system idle time

efficiency (utilization rate of component system) of component system
𝑗 is:

𝑈𝑅𝑆𝑗 (𝑡) =
∑𝑁𝑇

𝑖=1
∑𝑂𝐶𝑁𝑖(𝑡)

𝑎=1 𝑥𝑖,𝑎,𝑗 ⋅ 𝑝𝑖,𝑎,𝑗
𝑀𝐶𝑇𝑗 (𝑡)

(14)

The completion rate of task 𝑖 (completion rate of task) is:

𝐶𝑅𝑇𝑖 (𝑡) =
𝑂𝐶𝑁𝑖 (𝑡)

𝑛𝑖
(15)

In this study, the state space comprises variables that are associated
with the utilization of the component system and the rate of task
completion. These state features serve as an evaluation of the feasibility
of the current planning solution. The definition of the action space
is closely linked to the setting of the state space, and the two work
together to facilitate the neural network in learning a more effective
strategy. For instance, if the current average utilization of the compo-
nent systems is low, the neural network should select an action that can
enhance the average utilization of the component systems in the sub-
sequent decision period. The analysis indicates that the action should
be chosen in a way that the tasks to be executed in the next decision
period are distributed more uniformly among the scheduled sequence
of operations, thereby minimizing the average idle time between the
execution of component systems. Similarly, if the current average task
completion rate is low, the neural network should choose an action that
can improve the average completion rate of the tasks corresponding to
the mission planning solution in the next decision period. The analysis
suggests that an action should be selected to execute the next operation
corresponding to the task that has already been executed but has the
lowest number of executed operations in the next decision period.

4.3.3. Action space design based on the task execution state
Each stage of mission planning is associated with a specific state,

and for each state, a corresponding action must be designed. The design
of the action space can be approached from two perspectives: first, by
designing actions that enhance the average utilization of component
systems, and second, by designing actions that improve the average
9

completion rate of tasks. o
Table 5
Single rule.

Rule serial number Rule description

1 Select the operation that will result in the shortest
wait time for component system s

2 Select the operation that can be executed at the
earliest in the next step

3 Select the operation with the shortest execution
time for the next step

This paper proposes a set of five rules, consisting of one single
rule and four compound rules, aimed at selecting the optimal strategy
for the next execution operation. The choreography of the mission
planning scheme is optimized by learning these rules, which can be
categorized as single rules or compound rules comprising multiple
single rules (as presented in Table 5). The starting point for the design
of these rules is the selection of the operation that can be executed as
early as possible, depending on the situation.

Rule 1: Prioritizes the selection of the operation that minimizes the
component systems’ waiting time, and if the waiting time is the same,
the one that can be executed earliest in the next step.

Rule 2: Selects the operation with the earliest executable time for
the next step.

Rule 3: Chooses the operation with the shortest execution time in
he next step, and if the execution time is the same, the one with the
arliest executable time in the next step.
Rule 4: Prioritizes the operation with the earliest executable time

or the next step, and if the executable times are the same, the one that
inimizes the component systems’ waiting time.
Rule 5: Selects the operation with the earliest executable time in

he next step, and if the executable time is the same, the one with the
hortest execution time.

In this model, the action space is defined based on the selection of
ules in the current task execution state, and only one task is chosen
t each decision step according to the selected rules. This approach op-
imizes the choreography of the mission planning scheme and ensures
he efficient execution of the component systems.

.3.4. Component system scheduling algorithm
After selecting an appropriate action for the current state, an oper-

tion is chosen for execution based on the rules corresponding to the
elected action. The execution of this operation requires scheduling of
he corresponding execution component systems and determining the
xecution time. To solve this problem, a component system scheduling
lgorithm has been designed in this section.

The scheduling of component systems involves selecting the appro-
riate systems and processing time for each operation to optimize the
bjective function value. To accomplish this, we propose a mission
lanning algorithm that utilizes a single operation scheduling approach.
his approach schedules the next operation in the sequence after a
uitable execution time has been determined for the previous opera-
ion. During the scheduling process, all constraints are checked, and a
uitable execution time is determined only when the operation satisfies
ll constraints.

The component system scheduling algorithm (CSSA) is presented in
lgorithm 2. The input of the algorithm is the operation corresponding

o the action selected in the current state, and the output is the specific
omponent system scheduling scheme for all operations of the current
ask.

The scheduling algorithm for the component system involves a
onstrained judgment process. Initially, the algorithm evaluates the
vailable component systems that can execute a given operation. The

peration can only be executed on component systems that match the



Advanced Engineering Informatics 58 (2023) 102209Y. Huang et al.

𝑀
t
t

𝑄

Algorithm 2: Component System Scheduling Algorithm(CSSA)
Input: current SoSs architecture, component system execution record 𝑅𝑒𝑐, task list 𝑇 , current scheduling scheme 𝑃 𝑙𝑎𝑛, component system

list 𝑅
Output: Specific component system programming 𝑝𝑙𝑎𝑛∗ for all operations in the next mission planning phase

1 Select the corresponding operation according to the rules corresponding to the selected action;
2 Set the initial execution moment 𝑡 = 𝑖𝑛𝑓 , set the component system 𝑟_𝑐ℎ𝑜𝑜𝑠𝑒𝑛 = 0 for the initial execution operation;
3 for 𝑟 = 1, ..., 𝑁𝑅 do
4 According to the task list 𝑇 to get the current operation r corresponding to the large task;
5 if 𝑅𝑒𝑐(𝑡𝑎𝑠𝑘) ≤ 𝑡 and Match component systems to the type of capability of the operation then
6 Update operation execution time 𝑡 = 𝑅𝑒𝑐(𝑡𝑎𝑠𝑘);
7 Update component systems for implementation operations 𝑟_𝑐ℎ𝑜𝑜𝑠𝑒𝑛 = 𝑟;
8 else
9 Go to the next component system for the operation;
10 Update component system execution records 𝑅𝑒𝑐(𝑡𝑎𝑠𝑘);
11 Add the operation to the Gantt chart according to the scheduling scheme to get the new scheduling scheme 𝑃 𝑙𝑎𝑛∗;
type required for completion. Subsequently, the algorithm schedules
the operation at an appropriate location after ensuring that the pre-
vious operation has been completed. This necessitates an evaluation
of whether the scheduled operation execution location has already
completed the previous operation.

4.3.5. Incremental revenue-oriented reward design
After scheduling the operation using a component system, the re-

ward can be calculated based on the new mission planning scenario
generated and the scenario from the previous phase. In this paper’s
SoSs architecture, the main concern in the component system allocation
problem is task completion time. Therefore, the reward value for each
decision step is determined by the task completion time. The timely
reward reflects the short-term effect of the action on the scheduling
scheme, while the cumulative reward value reflects the long-term
effect. By prioritizing the cumulative reward value, the reinforcement
learning algorithm can learn the action selection strategy that yields
the highest impact on task completion results.

The minimized maximum completion time of the task is 𝑀𝑇 =
min

{

max
(

𝑐𝑖
)}

. Therefore, the design reward value is 𝑟𝑡 = 𝛼 ⋅𝐶𝑖+(1 − 𝛼)⋅
𝑇 . To reasonably evaluate the timely rewards of the actions, define

he component system effectiveness under the condition (state 𝑘) that
he current number of operations is:

(𝑘) = 1
𝑁𝑀 (𝑘)

𝑁𝑀
∑

ℎ=1

∑𝑁𝐽 (𝑘,𝑖)
𝑖=1

∑𝑁𝑂𝑖
𝑗 𝑇𝑖𝑗ℎ

𝑀𝑇 (𝑘)
= 𝑇

𝑁𝑀 (𝑘) ⋅𝑀𝑇 (𝑘)
(16)

where 𝑄 (𝑘) denotes the average efficiency of component system utiliza-
tion, 𝑁𝑚 (𝑘) denotes the number of component systems used at state 𝑘,
𝑁𝐽 (𝑘, 𝑖) denotes the set of tasks scheduled at state 𝑘, 𝑁𝑂𝑖

denotes the
number of operations corresponding to task 𝑖, 𝑀𝑇 (𝑘) denotes the total
time of task completion at state 𝑘, and 𝑇 denotes the total working time
of component systems.

The prompt reward corresponding to the action of the state 𝑘 is:

𝑟𝑘 = 𝑄 (𝑘) −𝑄 (𝑘 − 1) (17)

The cumulative award value can be calculated according to the
following equation:

𝑅 =
𝐾
∑

𝑘
𝑟𝑘 =

𝐾
∑

𝑘=1
(𝑄 (𝑘) −𝑄 (𝑘 − 1))

=𝑄 (1) −𝑄 (0) +𝑄 (2) −𝑄 (1)
+⋯ +𝑄 (𝑘) −𝑄 (𝑘 − 1)
=𝑄 (𝑘) −𝑄 (0) = 𝑄 (𝑘)
= 𝑇

(18)
10

𝑁𝑀 (𝑘)⋅𝑀𝑇 (𝑘)
4.3.6. Value function design for large-scale state
As the value function is dependent on the reward value, it can

be designed after the design of the reward. The value function plays
a crucial role in reinforcement learning algorithms, as it guides the
MDP model in selecting the most appropriate action. It is a function
that is determined by both states and actions and is used to assess
the expected long-term gain from selecting different actions in a given
state. In accordance with the Bellman equation, the value function can
be expressed as:

𝑞(𝑠, 𝑎) = 𝐸
(

𝑟𝑡+1 + 𝛾 max 𝑞
𝑎′

(𝑠𝑡+1, 𝑎′)|𝑠𝑡+1 = 𝑠, 𝑎𝑡 = 𝑎
)

(19)

In this problem, with the increasing number of tasks, the state space
grows exponentially, which can be interpreted as the state space tends
to be continuous, so it is difficult to reflect the relationship between the
state, action, and long-term value by taking the matrix data structure
of 𝑄 table, so it is necessary to express the state by approximating the
value function, and a parameterized continuous function 𝑄(𝑠, 𝑎; 𝜃) can
be used to approximate the state action-value function. In this case, the
update operation of the value 𝜃 of the continuous function 𝑄(𝑠, 𝑎; 𝜃) is
equivalent to the update operation of the 𝑄 function.

Value function approximation is a fundamental technique in re-
inforcement learning that can be divided into linear and nonlinear
methods. Linear methods rely on linear combinations of basis functions
and parameters, which limits their ability to approximate complex
functions. In contrast, nonlinear methods utilizing neural networks can
theoretically approximate arbitrarily complex value functions. How-
ever, directly incorporating Q networks into reinforcement learning
algorithms can lead to unstable training due to the strong correlation
of the training data. To address this issue, Mnih et al. [28] proposed
the DQN algorithm, which defines a target network and utilizes an
experience pool structure to ensure stable convergence.

In this paper, we describe the value function using a fully connected
artificial neural network, as illustrated in Fig. 7. The fully connected
network is the most fundamental form of such networks, consisting of
an input layer, an implicit layer, and an output layer. At each time step
t, the state parameter serves as input to the network, which outputs
a vector representing the expected long-term value for each possible
action in state 𝑠. The network is trained using a learning algorithm
that eventually converges. Ideally, in this problem, the network training
process converges when the output vector represents the maximum
long-term value achievable by taking different actions in any state 𝑠.

4.3.7. Network model training algorithm
In this study, we employ a Markov model to determine the preferred

order of task scheduling based on action selection. However, the exact
order varies slightly during the generation of initial solutions for popu-

lation search and neighborhood search. During action selection, a task



Advanced Engineering Informatics 58 (2023) 102209Y. Huang et al.
Table 6
The candidate systems and their parameters.

Candidate systems Fcn type Cost (m$) Earliest release time (h) Latest working time (h)

EW aircraft I (S) S 280 20 420
EW aircraft I (D) D 280 50 300
EW aircraft II (S) S 320 30 900
EW aircraft II (D) D 320 20 150
Fighter I (S) S 220 50 200
Fighter I (I) I 220 100 300
Fighter II (S) S 250 80 450
Fighter II (I) I 250 60 200
Destroyer I (S) S 1200 100 800
Destroyer I (D) D 1200 120 800
Destroyer I (I) I 1200 20 820
Destroyer II (S) S 1500 50 300
Destroyer II (D) D 1500 30 900
Destroyer II (I) I 1500 20 650
UAV I (S) S 50 50 500
UAV I (I) I 100 100 900
UAV II (S) S 80 30 150
UAV II (I) I 120 40 200
USV I (S) S 55 100 500
USV I (I) I 80 120 400
USV II (S) S 88 30 300
USV II (I) I 125 100 500
Fig. 7. Schematic representation of value function approximation based on a fully
connected network.

is identified and placed after the previous task. In neighborhood search,
the selected task is also rejoined to the task sequence according to a
certain strategy to obtain a new neighborhood structure. Balancing ex-
ploration and mining are crucial in action selection. Exploration focuses
on the global search capability of reinforcement learning methods,
while mining focuses on the local search capability of reinforcement
learning methods.

To select a task, a greedy approach is adopted, where the probability
of selecting each selectable task in the current state is obtained, and
the action with the highest probability value is selected. Alternatively,
a random task can be selected from the unselected tasks. It is important
to note that the set of optional tasks must be generated before selecting
the action, and the selected task should remain unselected for the action
selection to be valid.

The improved deep reinforcement learning algorithm is presented in
Algorithm 3. The outer layer represents the number of learning rounds,
and the inner layer represents traversing through the current task list
and selecting an action at each time step. The state is updated by
selecting an unselected task in the current task list, and the state is
the list of attributes of all selected tasks at the current time step. To
address the problem of poor stability in the training process, we adopt
the concept of replay memory and target network. DQN stores the state
11
transition data in the replay memory and updates the network with the
sampled state transition history data. The training effect is stabilized
by updating the target network weights every fixed step. The target
network directly calculates the Q value of each action in the current
state, and DQN calculates the reward and updates the state by selecting
the action with the largest Q value. Finally, it is important to note
that DQN is an off-policy reinforcement learning method, meaning that
the target action value function and the action value function are not
consistent. In the DQN algorithm, the target action value function and
the action value function are consistent only when the target network
weights 𝜃′ = 𝜃 are updated at fixed steps.

Following data training, the DQN network can provide a decision so-
lution for each step in the mission planning process. At the initialization
stage, the DQN network selects the appropriate action selection rule
based on the current state, chooses the next operation to be executed,
employs the component system scheduling algorithm to arrange the
suitable component systems for the operation, updates the state, and
repeats the above steps until the final mission planning solution is
obtained.

5. Experiment

To evaluate the efficacy of the models and algorithms presented
in this paper, task scenarios were devised to test the effectiveness of
the SoSs architecture selection algorithm. Both the inner layer DQN-
based mission planning algorithm and the outer layer SoSs architecture
selection algorithm was subjected to verification. The experimental
setup is described in the first subsection of this section, followed by
an analysis of the experimental results in the second subsection. These
tests serve to validate the proposed models and algorithms.

5.1. Experimental settings

In this study, experiments were conducted on a desktop computer
with an Intel(R) Core (TM) i9-9980HK CPU, 2.4 GHz, and 32 GB
memory, running the Windows 10 operating system. The coding en-
vironment used was Python 3.9.7. The algorithms were tested using
the same system configuration, and the data and code have been made
available in a GitHub repository.

To assess the effectiveness of the DQN-based mission planning
algorithm, we conducted experiments using ten random scenarios,
each consisting of 120 operations and 21 component systems of four
different types. The attributes of the component systems included their



Advanced Engineering Informatics 58 (2023) 102209Y. Huang et al.
Algorithm 3: Training Algorithm of DQN
Input: SoSs architecture 𝐴, task list 𝑇 , component system list 𝑅, number of training rounds 𝑀
Output: trained network parameters 𝜃

1 Initialize the action value function 𝑄 using random network parameters 𝜃;
2 Initialize the target action value function �̂� with the same parameters 𝜃′ = 𝜃;
3 Set the amount of data that can be held in the initialized relay buffer is 𝑁 ;
4 for 𝑒𝑝𝑜𝑠𝑖𝑑𝑒 = 1, ...,𝑀 do
5 Initialize the first state and transform the state into features through the network as input 𝜙(𝑠𝑡);
6 for 𝑡 = 1, ..., 𝑇 do
7 Select an action 𝑎𝑡 at random with a probability 𝜀;
8 If the small probability event does not occur then the greedy strategy is used to select the action from the unselected actions;
9 𝑎𝑡 = argmax

𝑎
𝑄(𝜙(𝑠𝑡), 𝑎; 𝜃), mark it as the selected action for the current moment;

10 Execute the component system scheduling algorithm for the selected action to obtain the reward value 𝑟𝑡 and the next state 𝑠𝑡+1;
11 Eigenvalue conversion for the next state using;
12 Storage of status transition data in relay buffer 𝜙(𝑠𝑡+1);
13 Sampling a random set of state transfer sample data

(

𝜙(𝑠𝑘), 𝑎𝑘, 𝑟𝑘, 𝜙(𝑠𝑘+1)
)

from the relay buffer;
14 Execute the gradient descent algorithm and update the network parameters 𝜃 of the action value function;
15 Update the target network weights every fixed step by 𝜃′ = 𝜃;
runnable time window and type, while the attributes of the operations
included their type, execution time, and waiting time. The values of
each attribute were generated from a uniform distribution.

We designed four cases, each with 120 operations, labeled as ‘‘120-
N’’, where N represents the case number. Each algorithm runs 30 times
on one example, with make span used as the basis for evaluation. We
statistically obtain the maximum (Best), mean (Mean), and standard
deviation (Std. Dev.) of the results for evaluation benchmark metrics.
We selected six experimental comparison algorithms, including the
artificial bee colony algorithm (ABC) [41], constructive heuristic Al-
gorithm 1 (HA1), heuristic Algorithm 2 (HA2), local search algorithm
(LS), adaptive large domain search algorithm (ALNS) [42], and genetic
algorithm (GA) [43]. The training dataset for the inner layer DQN
network is set to 10, with each dataset trained for 30 epochs. The
other comparison algorithm parameters are consistent with those in the
literature.

To test the effectiveness of SAEA, this paper employs a synthetic air
and missile defense (AMD) example which mimics the U.S. Naval Inte-
grated Fire Control Counter Air (NIFC-CA) system. Small-unit systems
and low-cost unmanned systems which known as component systems
will be added to this combat SoSs.

The task set in this paper is supposed to be generated randomly.
And the candidate systems and part of input parameters are listed in
Table 6. The EW aircraft, fighter, destroyer, UAV and USV can provide
multiple functions. Assume that each type of system has two variants
with different technology advancement levels: cost and released time
window. The SAEA algorithm parameters include a crossover probabil-
ity of 0.9 for the outer layer genetic algorithm, a variance probability
of 0.05, a population size of 10, 150 iterative search generations, a cost
constraint of 8000.

5.2. Experimental results

5.2.1. Performance of DQN-based mission planning algorithm
Fig. 8 shows the utilization of the component system by the DQN at

each training step. The curve represents the average utilization of com-
ponent systems during the DQN’s training process, with the horizontal
axis indicating the training step and the vertical axis representing
the average utilization of component systems. The highest average
utilization of component systems occurs at the beginning of the training
process when there are fewer training steps. This is because, during
the initial state, operations are evenly distributed across the component
systems for execution, leading to the highest level of utilization. As the
training step length increases, the complexity of the operation arrange-
ment grows, resulting in idle time for the component systems during
12
Fig. 8. Component system utilization by the DQN at each training step. X axis: number
of training step, Y axis: component system utilization.

execution and a decrease in component system utilization. However,
as the training step length continues to increase, the component system
utilization gradually stabilizes at a constant value.

The Gantt chart depicting the mission planning process is presented
in Fig. 9, which showcases the efficacy of the algorithm through the
evenly distributed operations resulting in reduced execution time. The
high-resolution diagrams have been replaced in the article, where the
numbers on the Gantt chart represent the task serial number and the
activity serial number, and the same color for the progress bar cor-
responding to the same task. Table 7 provides a comparative analysis
of the makespan accrued by each algorithm, with our proposed DQN-
based mission planning algorithm exhibiting the highest task execution
gain in most cases. The superiority of the proposed algorithm over
its counterparts is evident, with the mean and standard deviation
indicating consistent and stable performance across multiple runs (see
Fig. 11).

The box plots representing the gains achieved by each algorithm are
presented in Fig. 10. Analysis of the box plots for the four case scenarios
indicates that the DQN-based mission planning algorithm outperforms
other algorithms in terms of gain, gain average, and convergence. These
results suggest that the proposed DQN-based mission planning algo-
rithm is capable of effectively addressing the system mission planning
problem and holds significant potential for practical applications.

Fig. 11 shows the solution time of each algorithm under different
task scale. It can be seen from the figure that the solution time of



Advanced Engineering Informatics 58 (2023) 102209Y. Huang et al.
Fig. 9. Mission planning Gantt Chart.
Table 7
Comparison of makespan of the algorithm.

Instance DQN ABC ALNS GA LS

min avg std min avg(WR) std min avg(WR) std min avg(WR) std min avg(WR) std

120-1 428 513.3 61.5 674 946.8- 150.3 875 967.3- 89.3 765 884.7- 88.3 921 1063.2- 129.1
120-2 514 620.4 56.6 744 1002.5- 153.6 869 1016.5- 89.6 809 959.2- 91.7 785 1060.5- 160.1
120-3 476 509.7 25.1 765 907.2- 87.6 799 918.2- 63.6 760 889.4- 104.7 777 939.7- 112.8
120-4 487 592.8 90.8 796 925.9- 78.5 809 966- 81.3 625 841.8- 179.4 750 922.9- 100.5
Fig. 10. Box plot of fitness for each algorithm.

Fig. 11. The solution time of each algorithm under different task scale.

the DQN algorithm is significantly shorter than the other compared
algorithms for different task sizes. This is because the number of popu-
lations and iterations for the evolution of the algorithm are specified to
ensure that the number of individuals involved in the evolution of the
evolutionary algorithm and the size of the iterations are the same. In
the limited population and the number of iterations, the search effect
of the algorithm is not very good, at the same time, when using the
13
evolutionary algorithms, generally set up a specific coding method for
a specific problem, design and improve the crossover, mutation and
other operators, so as to adapt to a particular problem, in this paper, we
use the comparison of algorithms belongs to the more basic algorithms,
there is no algorithmic improvement of the problem proposed in this
paper, so these comparison algorithms do compare with the proposed
algorithm in this paper, the algorithms are not as effective as the
algorithms. Algorithms are indeed much less effective compared to the
algorithms proposed in this paper.

5.2.2. Case study of the SoSs architecture evolution algorithm
The convergence curve of the population-based System of Systems

(SoSs) architecture solution process is illustrated in Fig. 12. It is evident
that the population-based search strategy exhibits convergence after
approximately 124 generations. The best component systems portfolio
selected is: EW aircraft (S), EW aircraft (D), Fighter I (S), Destroyer I
(S), Destroyer I (I), Destroyer II (S), Destroyer II (D), UAV II (S), UAV
II (I), USV I (I).

Notably, the population-based strategy can discover relatively sat-
isfactory solutions in the initial generation, owing to the large search
space of the population and the reinforcement learning mission plan-
ning algorithm-based crossover and mutation operations utilized to
evaluate the SoSs architecture solution. As a result, the population-
based strategy can efficiently explore and identify optimal solutions
within a shorter time frame.

6. Conclusion

A learning-based method for optimizing the selection of System of
Systems (SoSs) architectures is proposed in this paper. Specifically,
a task-oriented SoSs architecture selection optimization model is pre-
sented, which can be transformed into a two-layer nested optimization
model. The outer layer optimization model focuses on modeling the
SoSs architecture, while the inner layer optimization model models the
mission planning problem. These two layers of optimization models
are iteratively updated to generate an optimal SoSs architecture that
ensures optimal mission planning. To improve the efficiency of mission
planning, a DQN-based mission planning algorithm is proposed, which
defines task states, uses task selection rules as actions, and learns
effective rules from interaction with the environment. Experimental



Advanced Engineering Informatics 58 (2023) 102209Y. Huang et al.
Fig. 12. Convergence curve of SoSs architecture-solving process.

results demonstrate that this algorithm not only improves the solution
efficiency of mission planning, but also achieves better make span than
other comparative algorithms.

The task-oriented selection optimization approach for System of
Systems (SoSs) architecture has several advantages. Firstly, it boasts a
clear and logical framework that highlights both the mission planning
process and the optimization process of the SoSs architecture. Secondly,
it is highly flexible and can easily adapt to different types of future
tasks. The algorithm can be modified by the objective function of
the inner layer or outer layer optimization algorithm. Although the
proposed algorithm is effective, further mechanisms and operators can
be designed to adapt to more complex task scenarios.

For reinforcement learning-based resource scheduling algorithms,
resource integration for combat systems with a large number of tasks
is significantly better than traditional optimization algorithms within a
limited number of iterations. The algorithm possesses fastness as well as
interpretability because many heuristics are utilized, but this method is
equivalent to a combination of multiple heuristics and a combination
of heuristics corresponding to the characteristics of the task learned
through reinforcement learning algorithms, and thus can adapt to the
scheduling of that task scenario, can perform better, and can have a
higher interpretability.

Currently, it can only be used in the system design problem where
the scheduling objective is used as the evaluation, and the current
algorithm only considers the efficiency of the task execution, but as
long as the objective function is modified, the method can optimize
other objectives as well. In addition, this paper considers the case where
all resources can communicate with each other, and does not discuss
the case where the communication coverage is limited. However, the
methodology of the solution framework can be extended to various
system design problems, and the algorithm proposed in this paper can
be used as a reference idea.

In future research, the authors plan to investigate SoSs architecture
selection in dynamic task scenarios and analyze the mechanism of SoSs
architecture construction in different scenarios. They aim to provide
solutions for SoSs architecture selection and evolution problems in
dynamic task scenarios.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.
14
References

[1] Mark W. Maier, Architecting principles for systems-of-systems, Syst. Eng. 1 (4)
(1998) 267–284.

[2] Gautam Marwaha, Michael Kokkolaras, System-of-systems approach to air trans-
portation design using nested optimization and direct search, Struct. Multidiscip.
Optim. 51 (2014) 885–901.

[3] Joseph Tribble, Kevin MacG. Adams, Using system of systems engineering to
strengthen carrier strike group C4ISR readiness evaluation, Int. J. Syst. Syst.
Eng. 2 (2011) 98–111.

[4] Yong-Jun Shin, Lingjun Liu, Sang Hyun, Doo-Hwan Bae, Platooning LEGOs: An
open physical exemplar for engineering self-adaptive cyber-physical systems-of-
systems, in: 2021 International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2021, pp. 231–237.

[5] Bingfeng Ge, Keith W. Hipel, Liping Fang, Kewei Yang, Yingwu Chen, An
interactive portfolio decision analysis approach for system-of-systems architecting
using the graph model for conflict resolution, IEEE Trans. Syst., Man, Cybern.:
Syst. 44 (2014) 1328–1346.

[6] D.S. Jasper, Mst Hollingshead, Mosaic warfare networks can serve naval
expeditionary forces, Signals 5 (2022) 76.

[7] S. Mittal, Extending DoDAF to allow integrated DEVS-based modeling and
simulation, J. Def. Model. Simul. 2 (2) (2006) 95–123.

[8] Zhemei Fang, System-of-systems architecture selection: A survey of issues,
methods, and opportunities, IEEE Syst. J. 16 (2022) 4768–4779.

[9] G. Myers, Effects-based operations, Armed Forces J. Int. 140 (11) (2003) 47–49.
[10] Georgiy M. Levchuk, Feili Yu, Krishna R. Pattipati, Yuri N. Levchuk, From

hierarchies to heterarchies : Application of network optimization to design
of organizational structures *, in: 8th International Command and Control
Symposium, 2003.

[11] Georgiy M. Levchuk, Yuri N. Levchuk, Jie Luo, Krishna R. Pattipati, David L.
Kleinman, Normative design of organizations. I. Mission planning, IEEE Trans.
Syst. Man Cybern. A 32 (2002) 346–359.

[12] Yong Zhang, Changjiu Li, Xichao Su, Rongwei Cui, Bing Wan, A baseline-reactive
scheduling method for carrier-based aircraft maintenance tasks, Complex Intell.
Syst. (2022) 1–31.

[13] Georgiy M. Levchuk, Feili Yu, Yuri N. Levchuk, Krishna R. Pattipati, Networks of
decision-making and communicating agents: A new methodology for design and
evaluation of organizational strategies and heterarchical structures, in: Command
and Control Research Program, 2005.

[14] Y. Sun, Z. Fang, Research on projection gray target model based on FANP-QFD
for weapon system of systems capability evaluation, IEEE Syst. J. PP (99) (2020)
1–11.

[15] G. Lesinski, S.M. Corns, C.H. Dagli, A fuzzy genetic algorithm approach to
generate and assess meta-architectures for non-line of site fires battlefield
capability, in: 2016 IEEE Congress on Evolutionary Computation (CEC), 2016.

[16] M. Al-Amin, C.H. Dagli, A tool for architecting socio-technical problems: SoS
explorer, in: International Symposium on Systems Engineering, 2019.

[17] Shatad Purohit, Azad M. Madni, A model-based systems architecting and inte-
gration approach using interlevel and intralevel dependency matrix, IEEE Syst.
J. 16 (2022) 747–754.

[18] N. Davendralingam, D. Delaurentis, A robust optimization framework to
architecting system of systems, Procedia Comput. Sci. 16 (16) (2013) 255–264.

[19] T. Wang, X. Zhou, W. Wang, Y. Zhu, T. Jing, An optimal searching algorithm for
the equipment system-of-systems architecture space with uncertain capabilities,
IEEE Access PP (99) (2020) 1.

[20] Imad Sanduka, Roman Obermaisser, Model-based development of Systems-
of-Systems with real-time requirements, in: 2014 12th IEEE International
Conference on Industrial Informatics (INDIN), 2014, pp. 188–194.

[21] I. Sanduka, R.S. Kalawsky, Y. Tian, D. Joannou, M. Masin, Incorporating
architecture patterns in a SoS optimization framework, in: IEEE International
Conference on Systems, 2013.

[22] Candra Meirina, Georgiy M. Levchuk, Sui Ruan, Krishna R. Pattipati, Robert L.
Popp, Normative framework and computational models for simulating and
assessing command and control processes, Simul. Model. Pract. Theory 14 (2006)
454–479.

[23] S. Vanfossan, C.H. Dal, B. Kwasa, A system-of-systems meta-architecting approach
for seru production system design, in: 2020 IEEE 15th International Conference
of System of Systems Engineering (SoSE), 2020.

[24] Alex T. Price, Nels Knutson, Cihan H. Dagli, Using system-of-systems optimization
for healthcare: A use case in radiation oncology, in: 2022 IEEE International
Systems Conference (SysCon), 2022, pp. 1–5.

[25] M.M. Karim, C.H. Dagli, SoS meta-architecture selection for infrastructure inspec-
tion system using aerial drones, in: 2020 IEEE 15th International Conference of
System of Systems Engineering (SoSE), 2020.

[26] Yongliang Yuan, Qianlong Shen, Shuo Wang, Jianji Ren, Donghao Yang,
Qingkang Yang, Junkai Fan, Xiaokai Mu, Coronavirus mask protection algorithm:
A new bio-inspired optimization algorithm and its applications, J. Bionic Eng.
(2023) 1–19.

http://refhub.elsevier.com/S1474-0346(23)00337-3/sb1
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb1
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb1
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb2
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb2
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb2
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb2
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb2
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb3
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb3
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb3
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb3
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb3
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb4
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb4
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb4
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb4
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb4
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb4
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb4
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb5
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb5
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb5
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb5
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb5
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb5
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb5
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb6
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb6
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb6
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb7
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb7
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb7
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb8
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb8
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb8
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb9
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb10
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb10
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb10
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb10
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb10
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb10
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb10
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb11
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb11
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb11
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb11
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb11
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb12
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb12
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb12
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb12
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb12
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb13
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb13
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb13
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb13
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb13
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb13
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb13
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb14
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb14
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb14
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb14
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb14
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb15
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb15
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb15
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb15
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb15
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb16
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb16
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb16
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb17
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb17
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb17
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb17
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb17
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb18
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb18
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb18
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb19
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb19
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb19
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb19
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb19
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb20
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb20
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb20
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb20
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb20
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb21
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb21
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb21
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb21
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb21
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb22
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb22
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb22
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb22
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb22
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb22
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb22
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb23
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb23
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb23
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb23
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb23
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb24
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb24
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb24
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb24
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb24
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb25
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb25
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb25
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb25
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb25
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb26
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb26
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb26
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb26
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb26
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb26
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb26


Advanced Engineering Informatics 58 (2023) 102209Y. Huang et al.
[27] Yongliang Yuan, Qingkang Yang, Jianji Ren, Junkai Fan, Qianlong Shen,
Xiaobang Wang, Yong Zhao, Learning-imitation strategy-assisted alpine skiing
optimization for the boom of offshore drilling platform, Ocean Eng. 278 (2023)
114317.

[28] Yongliang Yuan, Jianji Ren, Shuo Wang, Zhenxi Wang, Xiaokai Mu, Wu Zhao,
Alpine skiing optimization: A new bio-inspired optimization algorithm, Adv. Eng.
Softw. (2022).

[29] Yongliang Yuan, Qianlong Shen, Wenhui Xi, Shuo Wang, Jianji Ren, Jiangong
Yu, Qingkang Yang, Multidisciplinary design optimization of dynamic positioning
system for semi-submersible platform, Ocean Eng. 285 (2023) 115426.

[30] Yongliang Yuan, Xiaokai Mu, Xiangyu Shao, Jianji Ren, Yong Zhao, Zhenxi
Wang, Optimization of an auto drum fashioned brake using the elite opposition-
based learning and chaotic k-best gravitational search strategy based grey wolf
optimizer algorithm, Appl. Soft Comput. 123 (2022) 108947.

[31] Lamia Belfares, Walid Klibi, Nassirou Lo, Adel Guitouni, Multi-objectives Tabu
Search based algorithm for progressive resource allocation, European J. Oper.
Res. 177 (2007) 1779–1799.

[32] F. Yu, F. Tu, K.R. Pattipati, Integration of a holonic organizational control
architecture and multiobjective evolutionary algorithm for flexible distributed
scheduling, IEEE Trans. Syst., Man, Cybern. A 38 (5) (2008) 1001–1017.

[33] Yejia Zhao, Yanhong Wang, Yuanyuan Tan, Jun Zhang, Hong-Xia Yu, Dynamic
jobshop scheduling algorithm based on deep Q network, IEEE Access 9 (2021)
122995–123011.

[34] Shu Luo, Linxuan Zhang, Yushun Fan, Dynamic multi-objective scheduling for
flexible job shop by deep reinforcement learning, Comput. Ind. Eng. 159 (2021)
107489.

[35] Pierre Tassel, M. Gebser, Konstantin Schekotihin, A reinforcement learning
environment for job-shop scheduling, 2021, ArXiv abs/2104.03760.
15
[36] Yuxin Li, Wenbin Gu, Minghai Yuan, Yaming Tang, Real-time data-driven dy-
namic scheduling for flexible job shop with insufficient transportation resources
using hybrid deep Q network, Robot. Comput. Integr. Manuf. 74 (2022) 102283.

[37] Yu jian Zeng, Zijun Liao, Yingying Dai, Rong Wang, Xiu Li, Bo Yuan, Hybrid
intelligence for dynamic job-shop scheduling with deep reinforcement learning
and attention mechanism, 2022, ArXiv abs/2201.00548.

[38] Yu Du, Jun-qing Li, Xiao-long Chen, Pei-yong Duan, Quan-ke Pan, Knowledge-
based reinforcement learning and estimation of distribution algorithm for flexible
job shop scheduling problem, IEEE Trans. Emerg. Top. Comput. Intell. (2022)
1–15.

[39] Richard S. Sutton, Andrew G. Barto, Reinforcement learning: An introduction,
IEEE Trans. Neural Netw. 16 (2005) 285–286.

[40] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland,
Georg Ostrovski, Stig Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou,
Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, Demis Hassabis,
Human-level control through deep reinforcement learning, Nature 518 (2015)
529–533.

[41] Bahriye Akay, Derviş Karaboğa, A modified Artificial Bee Colony algorithm for
real-parameter optimization, Inform. Sci. 192 (2012) 120–142.

[42] Yingguo Chen, Yanjie Song, Yonghao Du, Mengyuan Wang, Ran Zong, Cheng
Gong, A knowledge-based scheduling method for multi-satellite range system,
in: Knowledge Science, Engineering and Management, 2020.

[43] Qing Wang, Haiwei Luo, Jian Xiong, Yanjie Song, Zhongshan Zhang, Evolu-
tionary algorithm for aerospace shell product digital production line scheduling
problem, Symmetry 11 (2019) 849.

http://refhub.elsevier.com/S1474-0346(23)00337-3/sb27
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb27
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb27
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb27
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb27
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb27
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb27
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb28
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb28
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb28
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb28
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb28
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb29
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb29
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb29
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb29
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb29
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb30
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb30
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb30
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb30
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb30
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb30
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb30
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb31
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb31
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb31
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb31
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb31
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb32
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb32
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb32
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb32
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb32
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb33
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb33
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb33
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb33
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb33
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb34
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb34
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb34
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb34
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb34
http://arxiv.org/abs/2104.03760
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb36
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb36
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb36
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb36
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb36
http://arxiv.org/abs/2201.00548
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb38
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb38
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb38
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb38
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb38
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb38
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb38
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb39
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb39
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb39
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb40
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb40
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb40
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb40
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb40
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb40
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb40
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb40
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb40
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb40
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb40
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb41
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb41
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb41
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb42
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb42
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb42
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb42
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb42
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb43
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb43
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb43
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb43
http://refhub.elsevier.com/S1474-0346(23)00337-3/sb43

	When architecture meets RL+EA: A hybrid intelligent optimization approach for selecting combat system-of-systems architecture
	Introduction
	Related Work
	SoSs architecture selection method
	Mission planning method

	Problem Formulation
	SoSs Architecture Representation
	Mathematical Formulation for Architecture Selection

	Solution Approach for SoSs Architecture Selection
	Two-layer optimization model transformation of the problem
	Outer Layer SoSs Architecture Selection Algorithm
	Inner Layer DQN-based Mission Planning Algorithm
	Interaction Design of Mission Planning Process in MDP
	State Space Design based on the Task Execution State
	Action Space Design based on the Task Execution State
	Component System Scheduling Algorithm
	Incremental Revenue-oriented Reward Design
	Value Function Design for Large-scale State
	Network Model Training Algorithm


	Experiment
	Experimental Settings
	Experimental Results
	Performance of DQN-based Mission Planning Algorithm
	Case Study of the SoSs Architecture Evolution Algorithm


	Conclusion
	Declaration of competing interest
	Data availability
	References


