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A B S T R A C T   

Digital twin technology is gradually being applied to smart manufacturing systems and is providing valuable 
information for predictive maintenance of swarms of machines, but also raises the need for more accurate and 
real-time decision making. However, there is still a shortage of research in this area. This paper proposes a 
general multi-level predictive maintenance decision-making framework driven by digital twin, considering 
component dependencies, the variable time scale of decisions, and comprehensive maintenance resources, in 
which an optimal maintenance schedule can be obtained in real time and then fed back to the physical space, so 
as to realize closed-loop control. A maintenance decision-making optimization model is then formulated based on 
integer linear programming to minimize total maintenance costs while meeting required production capacity. 
Further, a novel matheuristics algorithm (i.e., the interoperation of metaheuristics and mathematical pro-
gramming techniques) is introduced for various maintenance decision scenarios. Finally, a case study of an 
offshore oil and gas production system consisting of eight subsea Christmas trees is examined, and the effects of 
changes in production capacity, failure thresholds, and maintenance resources on the multi-level optimization of 
decision-making solutions are discussed.   

1. Introduction 

1.1. Background 

Recent developments in internet technology, the Internet of Things, 
cloud computing, big data, and artificial intelligence have accelerated 
the integration of information technology with manufacturing systems, 
and data owned by enterprises have become increasingly rich, both of 
which are driving the manufacturing industry toward smart 
manufacturing [1]. The Digital Twin (DT) is a key technology with 
characteristics including interactive feedback between cyberspace and 
physical space, data acquisition, fault prediction, and iterative optimi-
zation for decision-making, and has become a focus of research in smart 
manufacturing [2]. DT models have been successfully applied in a wide 
range of manufacturing fields, from precision parts to full machines, and 
have been extended to the whole shop floor. 

In particular, DT has been widely applied in smart manufacturing 
systems, because it provides a real-time representation of the physical 
machine and generates data such as measures of asset degradation. The 
accessibility and ubiquity of data facilitate better prediction and main-
tenance of production processes and systems, and thus improve pro-
ductivity [3]. However, when using DT to make accurate and real-time 
decisions about predictive maintenance, the complexity of the opera-
tional environment and production tasks in manufacturing systems 
mean that some factors are not fully considered, such as complex de-
pendencies for multi-level systems composed of multiple components, 
the variable time scale of decisions, and some comprehensive mainte-
nance service resources (maintenance workers, spare parts, etc.). 

Abbreviations: DT, Digital Twin; MTTR, mean time to repair; FPS, frequency-priority-selection; ILP, integer linear programming; PM-DT, predictive maintenance 
decision-making model driven by Digital Twin; ROV, remotely operated vehicle; RUL, remaining useful life; VNS, variable neighborhood search; XT, Christmas tree. 
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1.2. Related work 

1.2.1. Digital Twin in the manufacturing system 
DT has become a widely used technology for integrating cyber and 

physical worlds. The concept of DT was first presented by Dr. Michael 
Grieves in 2003, in the University of Michigan’s course on product 
lifecycle management. DT simulates, records, and improves the pro-
duction process from design to retirement, including the content of 
virtual space, physical space, and the interaction between them. The 
most typical application of DT in smart manufacturing is Digital Twin 
shop-floor [4]. The Internet of Things provides ubiquitous sensing 
ability to collect data from different factors, businesses, and processes of 
the shop-floor, such as orders before production (e.g., pertaining to 
delivery, quantity, cost, and quality), and sensor data (e.g., material 
stock, human workload, and equipment capacity) [5]. 

Initially, the main research focus of DT included: 1) scheme evalu-
ation and defect inspection in the design phase [6]—for example Zhang 
et al. [7] proposed a DT-based approach for designing a hollow glass 
production line to meet the needs of rapid and individualized design; 
and 2) operating efficiency improvement—for example Li et al. [8] 
proposed a DT-based energy management prototype system for an 
extrusion workshop. Researchers are exploring appropriate ways to 
improve each link of the manufacturing process by using DT. Due to the 
complex task scenarios of smart manufacturing systems, a slight failure 
occurring during production may cause irretrievable losses. Thus, in 
recent years, many researchers have focused on fault prediction. For 
example, Guo et al. [9] proposed a DT-based real-time method of pre-
dicting remaining useful life (RUL), taking into consideration working 
conditions and measurement errors. The next problem is how to effec-
tively use the equipment operational information and fault prediction 
information provided by DT technology to make production and main-
tenance decisions, and this is still an underexplored area. 

1.2.2. Predictive maintenance in the manufacturing system 
Predictive maintenance can determine a maintenance schedule for 

each machine by monitoring mechanical condition, system efficiency, 
and other indicators [10]. Predictive maintenance in smart 
manufacturing systems has become a focus of research in recent years 
because of its potential to ensure safe and stable operation of the whole 
production system at the same time as reducing maintenance costs [11]. 
Performing predictive maintenance contributes greatly to reducing 
machine downtime and costs, and enhancing quality of control and 
production [12]. 

Existing optimization methods for predictive maintenance decision- 
making can be divided into four types: 1) machine learning [13] [14]— 
for example, Kevin et al. [15] propose a deep reinforcement learning 
algorithm approach to self-learn optimal maintenance decision policies, 
based on the health state of equipment; 2) mathematical programming 
[16]—for example, Pisacane et al. [17] proposed a bi-objective mixed 
integer linear programming (ILP) model and large neighborhood search 
for maximizing system reliability and minimizing maximum repair time; 
3) heuristic algorithm [18] [19]—for example, Feng et al. [20] proposed 
a competition game approach based on heuristic rules to search for the 
optimal strategy matrix; and 4) system modeling and simulation [21]— 
for example, Nordal and El-Thalji [22] presented a novel simulation 
model, in which predictive maintenance is leveraged into opportunistic 
intervals. 

The trend of key factor analysis in modeling is toward becoming 
more comprehensive. In initial work, the main considerations included 
production cycles, fault times, and downtime costs. Then, various 
maintenance service resources have been considered, such as service 
engineers with different skill levels [14], various tools [23], and spare 
parts [18] [24]. Constraint conditions have involved spare parts in-
ventories, ordering time and type, scheduling time and cost, resource 

performance, etc. For example, Cai et al. [25] proposed a maintenance 
method taking into account the technical level of maintenance 
personnel, which reduced the total number of spare parts and mainte-
nance preparation cost efficiently. Tian and Zhang [26] developed a 
predictive maintenance optimization procedure by considering repair 
resource requirements, particularly cranes, for failures of different 
components. 

In terms of the object level, predictive maintenance decision-making 
under DT has gradually developed from the component level, such as 
tribological machine components [27], to the system level [28], such as 
gearboxes [29] and CNC machine tools [30]. In recent years, widespread 
attention has focused on multi-level predictive maintenance for complex 
systems composed of multiple components, where interdependencies 
such as failure [13] [31], structural [23], and economic [32] de-
pendencies may exist between components. Dinh et al. [33] proposed a 
multi-level opportunistic predictive maintenance approach based on a 
degradation model considering disassembly impacts. Nguyen et al. [34] 
proposed a predictive maintenance policy with multi-level decision--
making by introducing a cost-based group improvement factor incor-
porating the economic dependencies as well as the location of the 
components in the system. Chang et al. [24] presented a service-oriented 
dynamic multi-level predictive maintenance grouping strategy consid-
ering economic dependency. 

1.3. Motivation and contribution 

To address the research gaps described in the previous subsection, 
we propose a framework, model, and solution method for multi-level 
predictive maintenance of smart manufacturing systems driven by DT. 
Our main contributions are as follows.  

(1) We propose a general predictive maintenance decision-making 
framework for smart manufacturing systems driven by DT. 
Based on monitoring and assessment of the system’s condition, an 
optimal schedule for maintenance is given in real time and then 
fed back to the physical space, to realize closed-loop control of 
operation and maintenance.  

(2) Our predictive maintenance decision-making optimization is 
formulated as an ILP model that minimizes total maintenance 
costs while meeting required production capacity, considering 
component dependencies, the variable time scale for decisions, 
and comprehensive maintenance resources.  

(3) We introduce a novel matheuristics algorithm as a general 
decision-making framework for various maintenance decision 
scenarios, featuring a variable neighborhood search (VNS) com-
bined with mathematical programming.  

(4) We demonstrate our approach using a case study of an offshore 
oil and gas production system consisting of eight subsea Christ-
mas trees. We also discuss the effects of changes in failure 
threshold, production capacity, and maintenance resources on 
the multi-level optimization of decision-making solutions under 
DT. 

1.4. Overview 

The rest of the paper is structured as follows. Section 2 describes the 
data flow of the predictive maintenance framework driven by DT. Sec-
tion 3 formulates the predictive maintenance decision-making optimi-
zation as an ILP model. On this basis, Section 4 introduces a novel 
matheuristics framework for various maintenance decision scenarios. 
Section 5 provides a case study featuring a multi-level offshore oil and 
gas production system. Section 6 concludes the paper and outlines 
possible directions for future research. 
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2. Data flow of the predictive maintenance framework driven by 
DT 

In a DT model, in the physical space, running status data are obtained 
for all components in each facility through sensors and other devices. 
The data support layer collects, transmits, and saves the acquired data, 
and then interacts with the virtual space. Based on the monitoring and 
condition assessment of the current system, the optimal maintenance 
decision-making schedule is given in real time and then fed back to the 
physical space, to realize closed-loop control of operation and mainte-
nance. As summary of the multi-level predictive maintenance decision- 
making framework driven by DT in smart manufacturing systems is 
shown in Fig. 1. 

2.1. Input data 

In the proposed predictive maintenance decision-making model 
driven by DT (denoted as PM-DT), it is necessary to set the basic 
parameter information for the manufacturing system in advance. The 
degradation state of equipment can be evaluated through real-time 
condition monitoring data collected by sensors, providing a basis for 
PM-DT. Predictive maintenance is performed periodically to maintain a 

low probability of failure during the whole production life cycle of the 
manufacturing system. The required real-time input information is 
summarized in Table 1. 

2.2. Output decision-making 

Based on DT technology, we propose a variable time scale for de-
cisions. The production cycle of the smart manufacturing system can be 
dynamically configured according to the requirements of managers and 
markets. At the same time, the maintenance decision-making cycle 
based on the production cycle can also be adjusted in real time. For the 
proposed PM-DT model, the real-time output maintenance decision in-
formation is summarized in Table 2. 

3. Problem formulation based on integer linear programming 

The proposed multi-level PM-DT model considers component de-
pendencies, the variable time scale of decisions, and comprehensive 
maintenance resources, and determines how to meet the production 
system’s required production capacity while minimizing total mainte-
nance costs, to achieve optimal economic efficiency of maintenance 
management for the manufacturing system. 

Fig. 1. The predictive maintenance decision-making framework driven by DT.  
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To develop this model, we establish a general formulation as an ILP 
model. The parameters and decision variables of the ILP model are 
formulated as follows: 

Sets: 
GSet of facilities in a manufacturing system, i ∈ G, g = card(G). 
NSet of all critical components, j ∈ N,n = card(N). 
TSet of maintenance decision-making cycles, t ∈ T. 
Parameters: 
qStart-up cost for the maintenance equipment each time (i.e., a fixed cost). 
oiProduction capacity of facility i per unit time. 
OtMinimum capacity threshold of the manufacturing system in cycle 

t. 
rijRemaining useful life of component j in facility i at the current 

time. 
RjRUL threshold of component j. 
fjDesign life expectancy of critical component j. 
dScaling relation between maintenance decision-making interval 

and RUL. 
d’Scaling relation between unit maintenance time and RUL. 
sjUnit cost of spare part for critical component j. 
SjtTotal number of spare parts for component j in stock in cycle t. 
wjThe number of maintenance workers required to repair component 

j. 

vjCost of a maintenance worker per maintenance activity. 
WjtThe number of available maintenance workers for component j in 

cycle t. 
mj Maintenance time of component j, m = max{mj}, j ∈ N. 
Ci Downtime loss caused by facility i per unit time. 
MA large number that is greater than the maximum design life ex-

pectancy of components. 
Decision variables: 
xijtBinary variable indicating whether component j in facility i needs 

to be repaired in cycle t (xijt=1) or not (xijt=0). 
zit Binary variable indicating whether facility i needs to be shut down 

for maintenance in cycle t (zit= 1) or not (zit= 0). 
yt Binary variable indicating whether the maintenance equipment is 

activated in cycle t (yt= 1) or not (yt= 0). 
lijtNon-negative consecutive integer variable indicating the RUL of 

component j in facility i at the end of cycle t. 
ctNon-negative dependent variable indicating downtime loss of the 

whole system in cycle t. 
otNon-negative dependent variable indicating production capacity of 

the whole system in cycle t. 
Objective function: 
The objective function is to minimize the total maintenance man-

agement cost, including the total fixed cost of start-up of the mainte-
nance equipment, the total variable cost of maintenance resources, and 
the economic loss caused by downtime maintenance. 

MinimizeTotal cost =
∑

t∈T
ytq+

∑

i∈G,j∈N,t∈T
xijt

(

sj +wjvj

)

+
∑

t∈T
ct 

Constraints: 
The above objective function and variables are subject to seven 

groups of linear constraints expressed in Eqs. (1)–(7), as follows.  

(1) Constraints to restrict the RULs of components in all facilities. 
{

lij1 ≤ rij − d +Mxij1∀i ∈ G, j ∈ N (1 -1)  

{
lij1 ≥ rij − d − Mxij1∀i ∈ G, j ∈ N (1 -2)  

{
lijt ≥ fj −

(
d − d′mj

)
− M

(
1 − xijt

)
∀i ∈ G, j ∈ N, t ∈ T (1 -3) 

Table 1 
Required real-time input data and descriptions.  

Parameter Description 

Number of facilities The total number of facilities in the 
manufacturing system. 

Number of critical components From importance analysis and literature- 
based research, critical components that 
greatly influence reliability are identified. 

Production cycle A complete production cycle for the specific 
smart manufacturing system. 

Maintenance decision interval The minimum time interval for scheduling 
maintenance decisions, based on the 
production cycle. 

RULs of critical components The remaining useful life is used to monitor 
the current operating status of critical 
components in each facility. 

Downtime cost for each facility per 
unit of time 

The cost of facility downtime for 
maintenance is determined based on facility 
capacity and market prices. 

Failure threshold of the RUL for each 
critical component 

To ensure normal operation of the facility, 
maintenance activity should be arranged 
before components’ remaining useful life 
falls below a threshold value. 

Design life expectancy of critical 
components 

After maintenance, the remaining useful life 
of the component is reset to the designed life 
expectancy. 

Structural dependence between 
critical components 

According to the structural correlation, 
maintenance of one component can lead to 
the replacement or disassembly of other 
working components, which will affect the 
maintenance strategy and maintenance 
time. 

Cost of maintenance equipment and 
technicians 

Maintenance technicians are required to 
operate professional maintenance 
equipment corresponding to components 
when replacing spare parts. 

Minimum production capacity 
threshold in the manufacturing 
system 

The minimum production capacity of the 
whole system in each maintenance decision 
interval is used to ensure stable output 
capacity in the total production cycle. 

Production capacity of a facility per 
unit time 

This parameter is used to evaluate the output 
capacity and downtime cost of the system. 

Quantity of spare parts in stock Maintenance activities are closely related to 
spare parts, especially for large and 
expensive spare parts in smart 
manufacturing systems. 

Unit cost of each spare part 

MTTR of critical components Mean time to repair is used to evaluate the 
impact of component maintenance time on 
facilities’ downtime.  

Table 2 
Output maintenance decision information and descriptions.  

Parameter Description 

Maintenance time node Maintenance activities are scheduled for each 
component of all facilities in all maintenance 
decision-making intervals during the whole 
production cycle. 

Availability state of 
maintenance resources 

Denoted as Boolean data, representing available or 
unavailable. 

Current cost of maintenance 
resources 

The cost of maintenance resources under the 
current maintenance plan is obtained by 
calculating the unit costs of spare parts and various 
other maintenance resources. 

RULs of components at each 
interval 

Based on the maintenance plan, components’ RULs 
at all decision-making intervals from the current to 
the end of the production cycle can be obtained. 

Total downtime cost of 
manufacturing system 

The downtime cost under the current maintenance 
plan is obtained based on the status of each 
component and the market prices in each time 
interval. 

Actual capacity of equipment The production capacity at each time interval 
under the current maintenance plan is obtained 
according to the status of each component in all 
facilities. 

Current quantity of spare parts 
in stock 

This quantity is obtained based on the replacement 
status of each component under the current 
maintenance plan. 

Operating status of each 
facility in system 

Denoted as Boolean data, representing running or 
down.  
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{
lijt ≤ fj −

(
d − d′mj

)
+M

(
1 − xijt

)
∀i ∈ G, j ∈ N, t ∈ T (1 -4)  

{
lijt ≤ lij,t− 1 − d +Mxijt∀i ∈ G, j ∈ N, t ∈ T : t > 1 (1 -5)  

{
lijt ≥ lij,t− 1 − d − Mxijt∀i ∈ G, j ∈ N, t ∈ T : t > 1 (1 -6)  

{
lijt ≥ Rj∀i ∈ G, j ∈ N, t ∈ T (1 -7) 

Constraints (1− 1)–(1− 7) are to maintain the stable operation of the 
manufacturing system by limiting the variation of RULs of components 
in each facility in all cycles as follows:  

A. When xijt = 0, t = 1 indicates that component j in facility i does not 
need to be repaired in the first maintenance decision cycle. Con-
straints (1− 1) and (1− 2) specify that the component works normally 
according to the current input parameter rij in the current cycle, and 
the RUL degrades with running time as lij1 = rjj-d. Similarly, t > 1 
represents the ordinary cycle t, and constraints (1− 5) and (1− 6) 
specify that the RUL degrades continuously from the last cycle as lijt 
= lij,t-1-d. Constraints (1− 3) and (1− 4) become redundant identical 
equations by using the big M method.  

B. When xijt = 1, component j in facility i needs to be repaired in the 
maintenance decision cycle t. Constraints (1− 3) and (1− 4) stipulate 
that after maintenance at the end of the current cycle, the RUL is 
restored to the design life, denoted lij1 = fj, and constraints (1− 5) and 
(1− 6) become redundant identical equations by using the big M 
method. 

Constraint (1− 7) indicates that in the whole production cycle, each 
maintenance operation should be carried out before the RUL falls the set 
threshold Rj, so as to ensure that the degradation of all components is 
maintained within a reasonable range, supporting normal operation of 
the manufacturing system.  

(2) Constraint to determine the structural dependence of components 
in the manufacturing system. 

xiat ≥ xibt∀i ∈ G, t ∈ T (2)  

Constraint (2) describe the structural dependency that in the 
same facility and same time cycle, if component b needs to be 
repaired, component a should be operated first. 

(3) Constraints on limited maintenance resources for each compo-
nent in multiple facilities in all cycles. 
{
∑

i∈G
xijt ≤Sjt∀j ∈ N, t ∈ T (3 -1)  

{
∑

i∈G
xijtwj ≤ Wjt∀j ∈ N, t ∈ T (3 -2)  

Constraint (3− 1) stipulates that the total number of j-type 
components to be scheduled for maintenance cannot exceed the 
total number of j-type spare parts Sjt in the current cycle t. 
Constraint (3− 2) stipulates that the total number of required 
maintenance workers for component j cannot exceed the total 
number of callable maintenance workers Wjt for component j in 
the current cycle t.  

(4) Constraints on facility downtime and loss due to maintenance 
time 

{
∑t+mj − 1

t′=t

zit′ ≥ mj − M

(

1 − xijt

)

∀i ∈ G, j ∈ N, t ∈ T (4 -1)  

{

ct ≥
d
d′

mjCi − M
(

1 − xijt

)

∀i ∈ G, t ∈ T (4 -2)  

{ct ≥ − Mzit∀i ∈ G, t ∈ T (4 -3)  

{
ct ≥ mjCi − M

(
1 − xijt

)
∀i ∈ G, j ∈ N, t ∈ T (4 -4)  

{ct ≥ − Mzit∀i ∈ G, t ∈ T (4 -5) 

Because any component maintenance will lead to facility shutdown, 
we adopt the logical relationship that the downtime should be the 
largest MTTR of components in the current round of group maintenance. 
When the production equipment is far away from the manufacturing 
system’s operation platform, or the equipment components are too 
complex, the maintenance time is often greater than or equal to the set 
maintenance decision-making cycle. In contrast, for manufacturing 
systems with a simple structure or convenient maintenance operation, 
the maintenance time is often less than the set maintenance decision- 
making cycle. Therefore, two sets of constraints are established:  

A. When d/d’ ≤ 1, i.e., the set maintenance decision-making cycle is 
less than or equal to maintenance time, constraints (4− 1)–(4− 3) are 
adopted. Specifically, xijt = 0 indicates that component j in facility i 
does not need to be repaired in decision cycle t. In this case, con-
straints (4− 1) and (4− 2) are redundant identical equations for zit 
and ct. xijt = 1 indicates that component j in facility i needs to be 
repaired in decision cycle t. In this case, constraint (4− 1) describes 
the limiting relationship between the maintenance time and the 
downtime by summing the downtime variable zit from the current 
time t to the time of component maintenance t + mj-1, and constraint 
(4− 2) calculates the downtime loss of the whole system based on 
maintenance time and downtime loss per unit time Ci. Constraint 
(4− 3) specifies the relationship between the shutdown state zit and 
the downtime loss ct.  

B. When d/d’ > 1, i.e., the set maintenance decision-making cycle is 
more than the maintenance time, constraints (4− 4)–(4− 5) are 
adopted, and are similar to constraints (4− 2)–(4− 3). The difference 
to situation A is that the maintenance time will not affect the 
downtime states in subsequent time periods.  

(5) Constraints on start-up of the maintenance equipment. 

{yt ≥ zit∀i ∈ G, t ∈ T (5 -1)  

{

yt ≤
∑

i∈G
zit∀t ∈ T (5 -2)  

Based on the shutdown state zit, these constraints limit the 
start-up state of maintenance equipment yt. Constraint (5− 1) 
limits the lower bound and constraint (5− 2) limit the upper 
bound by summing the shutdown state variables zit.  

(6) Constraints to guarantee that the total production capacity of the 
manufacturing system in each cycle exceeds the corresponding 
threshold. 

{

ot ≤
d
d′

∑

i∈G
Oi

(

1 − zit

)

∀i ∈ G, t ∈ T (6 -1)  

{ot ≥ Ot∀t ∈ T (6 -2) 
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{

ot ≤
d
d′

∑

i∈G
Oi − m

∑

i∈G
Oizit∀i ∈ G, t ∈ T (6 -3)  

{ot ≥ Ot∀t ∈ T (6 -4) 

Due to the various proportional relationships between maintenance 
time, maintenance decision-making cycle, and the deign life expectancy, 
two sets of constraints are established as follows:  

A. When d/d’ ≤ 1, i.e., the set maintenance decision-making cycle is 
less than or equal to maintenance time, constraints (6− 1) and (6− 2) 
are adopted. Specifically, constraint (6− 1) specifies the influence of 
equipment shutdown on the production system. Constraint (6− 2) 
limits the lower bound of the total production in any decision cycle t 
to be greater than the set threshold Ot in the corresponding cycle.  

B. When d/d’ > 1, i.e., the set maintenance decision-making cycle is far 
more than the maintenance time, constraints (6− 3) and (6− 4) are 
adopted. These are similar to constraints (6− 1) and (6− 2). The dif-
ference to situation A is that the maintenance time will affect the 
facility’s production in each cycle.  

(7) Constraints to define the value domains for all variables. 

xijt, zit, yt ∈ {0, 1}∀i ∈ G, j ∈ N, t ∈ T (7)  

4. A novel matheuristics method for various maintenance 
decision scenarios 

The solving efficiency of ILP decreases exponentially with the in-
creases in data size and various constraints, and the optimality of heu-
ristics cannot be determined. Matheuristics algorithms combine the 
robustness of mathematical programming and the high efficiency of a 
metaheuristic algorithms, and have been widely used in various opti-
mization mode[35] [36]. 

In this section, we introduce a novel matheuristics algorithm as a 
general decision-making framework for various maintenance decision 
scenarios. The proposed matheuristics combines with VNS and ILP, 
denoted VNS-ILP, which can ensure the quality of solutions within a 
controllable and reasonable time range. 

Neighborhood search is a class of local search-based optimization 
algorithms that explore the solution space by iteratively moving from 
one solution to its neighbors in the search space. The goal is to find the 
best possible solution to a given problem by searching within the vi-
cinity of the current solution. There are many variants of the neigh-
borhood search algorithm, including Local Search (LS), Variable 
Neighborhood Search (VNS), Tabu Search, and Simulated Annealing, 
etc. Compared to other neighborhood search algorithms, VNS has the 
advantage of being able to explore a larger search space by switching 
between different neighborhood structures during the search process, 
which can lead to better solutions. Additionally, VNS can be easily 
adapted to different problem domains, making it a versatile and effec-
tive optimization algorithm. Compared with basic VNS, the contribu-
tions of the proposed VNS-ILP are as follows:  

(1) According to the variable characteristics, the frequency-priority- 
selection (FPS) operator is designed in the shaking procedure to 
adaptively change the neighborhood structure.  

(2) ILP is used in the local search procedure by calling CPLEX solver, 
which guarantees the accuracy of its results. 

4.1. ILP solver in local search 

In the process of the local search, we call the ILP solver CPLEX to 
optimize a subset of binary variables in each iteration. We use the VNS 

framework and design an adaptive operator to select a subset of decision 
variables to be fixed, and then call the ILP solver to optimize the model 
based on the remaining unfixed decision variables. The designed oper-
ator is used to determine which subset of existing solutions can be 
optimized by the ILP solver to form different solution structures. 

Once the maintenance components and the maintenance service 
opportunity (time node) are known, the current RUL of each component 
in the system and decision variables related to the facilities’ downtime 
can be determined quite effectively. Based on the above principle, we 
generate the new solution from the existing solution by changing xijt 
variables in the ILP optimization. We denote a solution as S, and hence 
the value of decision variable xijt for solution S can be denoted as xijt(S). 
In our proposed VNS-ILP algorithm, when given solution S, the ILP 
solver is used to find a new neighbor solution S’ as follows: (i) select a 
subset G of all facilities related to decision variables xijt; (ii) fix 
xijt←xijt(S) for each component i, facility j, and time node t; (iii) unfix xijt 
for all xijt ∈ G; and (iv) call the ILP solver to optimize the problem and 
return S’. To obtain a new solution S’ better than the current solution S, 
it is very important to design a suitable criterion to select a subset G of 
decision variables xijt. Consequently, the adaptive operator is designed 
in a shaking procedure to select the corresponding subsets G and change 
the maintenance service opportunity and the sequence of facilities 
maintenance in the current solution S. 

4.2. The framework and operator of VNS-ILP 

In each local search of the algorithm, we use the adaptive operator to 
select subset G for ILP optimization, which directly determines the 
neighborhood structures for implementing VNS. In our proposed 
application, as the manufacturing system is working constantly and all 
components of different facilities degrade, real-time RUL values can be 
transmitted to the simulation platform through sensors, based on DT 
technology. Thus, a maintenance plan can be arranged consisting of the 
maintenance service opportunity, denoted as time node t, and the se-
lection of components in the system for maintenance, denoted as (i,j). 
Accordingly, maintenance resources can be scheduled, including the 
spare parts in stock for component j in time node t, maintenance 
workers, and tools for repair. 

The neighborhood search is based on facility characteristics (Lines 
5–19 in the Algorithm), and we design the FPS operator. The FPS 
operator selects a subset G of all facilities and then unfixes all time nodes 
related to each selected facility. To ensure that each facility has the 
adaptive frequency to be optimized, the G facilities with the least 
number of optimizations are preferentially selected in each iteration, 
and the value of G varies dynamically with the step size of θ, in the given 
interval of [α, Gmax] according to the improvement of each optimization. 
The mentioned parameters are explained in detail in Table 3. 

By performing the above FPS operator in the VNS, all binary decision 
variables xijt related to the selected facilities and time nodes are unfixed 
and optimized by the ILP solver (Line 8 and Line 10 in the Algorithm), 
while the other binary variables remain fixed to the current solution. 
When a new solution is found and adopted as the current solution, the 
new string S’ can be constructed. 

Table 3 
Input parameters of the VNS-ILP algorithm.  

Parameter Meaning 

Pmax The maximum number of iterations before terminating the algorithm 
Gmax The maximum number of selected facilities in the neighborhood search 
Nmax The maximum number of iterations before terminating the 

neighborhood search 
α The initial number of selected facilities in the neighborhood search, set 

as 30% of total facilities 
θ The step size for each iteration, set as 5% of total facilities  
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Algorithm. VNS-MIP (Pmax, gmax, Nmax) 

5. Case study 

5.1. Description of XTs and data input 

In this section, we use an offshore oil and gas production system as a 
representative smart manufacturing system. This system is applicable to 
deep water operations and can help achieve safe and controllable subsea 
oil and gas production [37]. An important piece of equipment in the 
offshore oil and gas production system is the subsea Christmas tree (XT) 
(an underwater device used for controlling the pressure of oil and gas), 
which has fifteen key components [38]. 

Over the last few decades, the complexity and functionality of XTs 
Fig. 2. The distribution diagram of the offshore oil and gas production system.  

Table 4 
Detailed comparison for scenarios with different degrees of network damage.  

Input Value 

Number of XTs 8 
Number of critical components 15 
Production cycle 1 year 
Maintenance decision interval 1 month 
Oil production of XT per interval 16,505 barrels of oil, approximately 5% range with time. 
Minimum oil production threshold for the whole subsea production system 66,020 barrels of oil, approximately 5% range with time. 
Price of crude oil per barrel $40 per barrel 
Design life expectancy of critical components Various valves: approximate range is from 120 to 180 months 

Others: approximately 240 months 
Failure threshold of the RUL for each critical component Approximately 10% of its design life expectancy 
The rental fee for the start-up of repair ship Approximately $10,500,000 per time 
Unit cost of spare parts for each critical component Various valves: ranging from $500,000 to $600,000 

Others: ranging from $300,000 to $500,000 
Quantity of spare parts in stock Uniformly distributed in the range of 3–5 
Number of ROVs Various valves: Uniformly distributed in the range of 8–10 

Others: Uniformly distributed in the range of 12–15 
Rental fee for one ROV ROV for various valves: Approximately $1400,000 per time 

ROV for others: Approximately $1600,000 per time  
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have increased, and any failure or damage to an XT will be a serious 
incident. Therefore, predictive maintenance of the offshore oil and gas 
production system is very important. However, because XTs are 
commonly located very far from the coast, divers cannot reach subsea 
installations. Maintenance is usually performed by a remotely operated 
vehicle (ROV), and a repair ship carries the ROV and the spare parts 
needed from the floating produce storage offshore facility (FPSO) to 
the XT’s location. The maintenance time is long, the maintenance re-
sources are limited, and the cost is high. After field investigation and 
based on information provided by a producer and supplier, the distri-
bution diagram of the offshore oil and gas production system is shown 
in Fig. 2, and the data input is summarized in Table 4. 

Fifteen key components of XTs and their corresponding values are 
listed in Table 5. Rj denotes the threshold of RUL (months), fj denotes 
the design life expectancy (months), sj denotes the unit cost of spare 
parts (million dollars), wj denotes the number of ROVs, and vj denotes 
the rental fee for an ROV (million dollars). 

The current RULs of critical components in each XT are listed in 
Table 6, and the oil production of each XT per interval is listed in 
Table 7. 

Table 5 
Input parameters of 15 key components.  

No. Component Rj fj sj wj vj 

1 Surface controlled subsurface safety valve, 
SCSSV  

11  144  0.5  8  1.4 

2 Production master valve, PMV  13  168  0.5  8  1.4 
3 Production wing valve, PWV  12  156  0.5  8  1.4 
4 Production choke valve, PCV  14  180  0.5  8  1.4 
5 Crossover valve, XOV  9  120  0.5  8  1.4 
6 Annulus master valve, AMV  10  132  0.5  8  1.4 
7 Annules wing valve, AWV  9  120  0.5  8  1.4 
8 Annulus vent valve, AVV  11  144  0.5  8  1.4 
9 Chemical injection valve, CIV  10  132  0.5  8  1.4 
10 MEG chemical control valve, MEGCCV  13  168  0.5  8  1.4 
11 Methanol injection valve, MIV  9  120  0.5  8  1.4 
12 Tubing hanger, TH  18  240  0.3  10  1.4 
13 Tree cap  23  300  0.3  10  1.4 
14 Flowlines  22  288  0.3  10  1.4 
15 Connector  18  240  0.3  10  1.4  

Table 6 
The current RULs of critical components in each XT.  

Components 
Facilities 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1#XT  96  146  98  54  101  18  59  108  91  120  46  33  136  258  36 
2#XT  116  77  28  169  26  46  88  122  16  40  61  230  61  106  109 
3#XT  85  48  116  151  57  127  82  102  65  80  64  198  112  36  129 
4#XT  57  94  24  59  91  42  24  21  50  140  78  180  255  242  25 
5#XT  107  158  96  165  26  26  24  106  132  76  120  224  236  191  79 
6#XT  49  75  67  112  98  76  76  93  114  120  110  107  35  97  190 
7#XT  73  106  64  145  29  71  58  121  24  149  84  53  30  262  159 
8#XT  41  97  55  30  19  55  14  26  49  83  14  57  171  83  127  

Table 7 
Oil production of XT per interval.  

Intervals 
Facilities 

1 2 3 4 5 6 7 8 9 10 11 12 

1#XT  16669  15911  16607  17269  16166  15713  16245  15993  17017  16342  17251  17186 
2#XT  17263  17225  16524  16023  16014  16922  16355  16480  16850  17193  16686  16901 
3#XT  16857  15909  17289  15710  15782  17161  16278  16618  16567  17177  16628  17015 
4#XT  16512  16377  17166  16398  16645  16875  16156  16600  16197  16944  16464  16006 
5#XT  16622  15900  17303  16653  15852  16453  15735  16175  17011  16336  15905  15974 
6#XT  16954  16489  17034  16948  17196  17053  15865  17116  17095  16131  16447  16811 
7#XT  15933  15810  16500  16511  17174  17297  16882  16473  16144  16023  16344  16642 
8#XT  16977  16303  16524  16261  16854  16193  16977  15890  16451  17136  16315  17278  

Fig. 3. The optimal maintenance schedule (system-level).  

Fig. 4. The optimal maintenance schedule for 1#XT (component-level).  
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5.2. Results analysis 

In this subsection, we verify the proposed PM-DT model and analyze 
the obtained maintenance schedule. Computational experiments are 
conducted on a Linux PC server with two 2.30 GHz Intel Xeon (R) CPUs 
and 128 GB RAM. The PM-DT model was coded by AMPL (a mathe-
matical programming language), and CPLEX (version 12.6.0.1) was used 
as the optimization solver. 

The results of the predictive maintenance decision-making schedule 
are obtained for the whole production cycle of 12 months. The optimal 
maintenance schedules are shown in Fig. 3 (system-level) and Fig. 4 
(component-level). 

As shown in Fig. 3, for the whole system, we can see that the 
maintenance decision are focused on February and March, and thus 
share the fixed cost of the start-up for the maintenance equipment, 
which reflects the characteristics of opportunity maintenance. Taking 
the 1#XT at the component level as an example, as shown in Fig. 4, we 
can see that the components to be repaired are managed in the same 
period, which is because this group maintenance can reduce the 
downtime cost. 

The frequency of maintenance is related to the failure threshold of 
different components, the various maintenance resources required, the 

oil production capacity threshold, etc. If production output must be 
high, the amount of downtime must be limited. Maintenance resources 
also limit which parts can be repaired at the same time. Accordingly, for 
the optimal maintenance schedule obtained, the variation in oil pro-
duction capacity in each period is as shown in Fig. 5. 

Relying on DT technology, the RULs of all components of XTs can be 
dynamically transmitted into the decision-making model in real time. 
From the obtained maintenance decision-making schedule, we take two 
typical components of 8#XT as examples to show the changes in RUL. As 
shown in Fig. 6(a), the RUL of component No.8 (annulus vent valve, 
AVV) decreases steadily over time. The red line represents a threshold of 
15 months for AVV, so no repairs are required during the one-year 
production cycle. In contrast, for component No.5 (crossover valve, 
XOV) shown in Fig. 6(b), it is necessary to carry out maintenance before 
the RUL reaches the threshold. 

6. Discussion 

6.1. Analysis of algorithm efficiency 

Based on the above production system, five more cases on different 
scales are generated by enlarging the number of facilities and compo-
nents by a certain proportion, in order to analyze the efficiency of al-
gorithms. The details of each case are summarized in Table 8. 

Fig. 5. Oil production capacity for each period.  

Fig. 6. Changes in RUL for two typical components of 8#XT.  

Table 8 
Details of cases on different scales.  

Case Number of 
facilities 

Number of 
critical 
components 

Number of 
maintenance decision 
cycles 

Case 
1 

F8C15T12  8  15  12 

Case 
2 

F40C30T12  40  30  12 

Case 
3 

F80C60T12  80  60  12 

Case 
4 

F100C75T12  100  75  12 

Case 
5 

F110C80T12  110  80  12 

Case 
6 

F120C90T12  120  90  12  
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Due to the global optimality of the exact algorithm, the solution 
obtained by CPLEX solver is taken as the baseline to measure algorithm 
optimality and solution efficiency. To perform comprehensive algorithm 
comparisons, different algorithms were tested on the above cases, 
including an exact algorithm, matheuristics algorithm, and VNS 

algorithm. We ran each algorithm 50 times and produced 50 solutions 
for each instance. 

As the data scale of the cases increases, Fig. 7(a) and (b) illustrates 
the variation trend of average objective values and computational time. 
Detailed observations of different algorithms are shown as follows: 

Fig. 9. Comparison of optimal solutions with production threshold of different levels.  

Fig. 8. Comparison of optimal solutions with different levels of failure threshold.  

Fig. 7. Comparison of the objective value and computational time.  
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(1) The proposed exact algorithm solved by CPLEX obtains optimal 
solutions for Case 1: F8C15T12 within 1 s. However, the 
computational efficiency and solution optimality decrease expo-
nentially with the size of dataset. For Case 6: F120C90T12, the 
CPLEX solver cannot find any best solutions within a reasonable 
time of 3600 s 

(2) The proposed matheuristics (VNS-ILP) can obtain the best solu-
tions within a reasonable time, and shows good robustness in all 
scales of cases. 

(3) The traditional VNS can obtain good solutions within a reason-
able time, while the deviation from the best result increases 
steadily with expansion of the data scale. 

6.2. Effect of failure threshold 

Usually, the component failure probability increases exponentially 
when the component RUL drops to a certain minimum threshold, called 
the component failure threshold. An increase in the RUL failure 
threshold indicates a higher standard at which components need to be 
repaired, and therefore greater system safety. Using the proposed 
method, we obtain optimal solutions for RUL failure thresholds of 5%, 
7.5%, and 10%. 

Fig. 8(a) illustrates the variation in start-up for maintenance, 
downtime and repaired components with changes in the RUL failure 
threshold. For the case study’s production cycle, as the threshold goes 
from 10% to 5%, the total number of component repairs drops from 13 
to 3, and the total downtime decreases by 71.4%, because there are 
fewer component repairs causing facilities to shut down. This directly 
affects the total oil production of the whole system. Fig. 8(b) illustrates 
the variation in total costs, consisting of downtime costs, variable costs 
of maintenance, and the fixed cost, based on the changes in RUL failure 
threshold. It can be observed that all types of cost rise steadily with the 
increase in the RUL failure threshold. 

6.3. Effect of oil production threshold 

In order to ensure the safe and stable operation of systems, the total 
oil production of all facilities in each interval should be maintained 
above a certain threshold. We assume that the threshold of oil produc-
tion ranges from a 25% reduction to a 50% increase, in increments of 
25%; these scenarios are solved using the proposed method, and the 
optimal solutions are obtained. 

Fig. 9(a) illustrates the variation in maintenance start-up, downtime, 
and component repairs with changes in the production threshold. 
Because the RUL failure threshold is unchanged, the total number of 
components repaired remains the same, as does the total variable cost 

during the whole production cycle. A higher oil production threshold 
limits the amount of downtime during the same period, thereby 
increasing the number of maintenance start-ups. Due to the long dis-
tances between the FPFO and the XTs, the rental fee for start-up of the 
repair ship per unit of time is expensive, which significantly increases 
the fixed cost, resulting in a higher total cost. Fig. 9(b) compares the 
variation in total costs, consisting of downtime costs, variable costs, and 
the fixed cost, based on changes in oil production threshold. 

6.4. Effect of maintenance resources 

For a complex smart manufacturing system, the inventory and 
market quantity of various maintenance resources at different periods 
greatly affect the maintenance plan. Specifically, maintenance of com-
ponents requires the use of professional equipment and spare parts by 
appropriate skilled workers, the inventory of maintenance resources in 
each period is limited, and the equipment rental provided by 
outsourcing companies in the market is also limited. Therefore, the real- 
time available inventory of various maintenance resources can be 
monitored to develop the optimal maintenance strategy to minimize 
total maintenance costs while meeting the constraints of maintenance 
resources. 

In this subsection, the impact of maintenance resources is tested 
using our case study of an offshore oil and gas production system. 
Component repairs should be carried out by ROVs leased from an 
outsourcing company. We consider scenarios where the number of ROVs 
per interval varies between 2 and 8, solve these scenarios using the 
proposed method, and obtain the optimal solutions. Fig. 10(a) illustrates 
the variation in maintenance start-up, downtime, and component re-
pairs with changes in the number of ROVs. Because the RUL failure 
threshold is unchanged, the total number of components repaired re-
mains the same, as does the total variable cost during the whole pro-
duction cycle. However, the decline in the number of ROVs available 
limits the number of components available for repair over the same 
period, increasing the amount of downtime and maintenance start-up, 
resulting in a significant increase in the total fixed cost and thus total 
maintenance costs. Fig. 10(b) compares the variation in total costs, 
consisting of downtime costs, variable costs, and the fixed cost, based on 
changes in the number of ROVs per interval. 

7. Conclusion 

We propose a general predictive maintenance decision-making 
framework for smart manufacturing systems that is driven by DT and 
based on monitoring and condition assessment of the current system. In 
this framework, data flow is analyzed, including available input data 

Fig. 10. Comparison of optimal solutions with various numbers of ROVs.  
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and output decision-making, to provide a reference for relevant staff and 
improve system efficiency. Then, considering component dependencies, 
the variable time scale of decisions, and comprehensive maintenance 
resources, an ILP model is formulated to solve the predictive mainte-
nance decision-making optimization problem with the minimum total 
cost while meeting the production requirements, and then a novel 
matheuristics algorithm is introduced for various maintenance decision 
scenarios. 

We use an offshore oil and gas production system as a case study, and 
examine the effects of changes in failure threshold, production capacity, 
and maintenance resources on maintenance decisions to provide pro-
duction guidance. In the context of the rapid development of DT, future 
research can seek to establish a more detailed predictive maintenance 
decision-making framework driven by DT, to more closely model the 
actual communication mechanisms across multiple organizations. In 
addition, the mathematical model for predictive maintenance decision- 
making under DT should also be improved to formulate a joint optimi-
zation model of production planning and maintenance decisions. 
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