
Information Sciences 636 (2023) 118924

Available online 6 April 2023
0020-0255/© 2023 Elsevier Inc. All rights reserved.

Frequent pattern-based parallel search approach for
time-dependent agile earth observation satellite scheduling

Jian Wu a,1, Feng Yao a,1, Yanjie Song a, Lei He a, Fang Lu c, Yonghao Du a,
Jungang Yan a, Yuning Chen a,*, Lining Xing b,*, Junwei Ou a

a College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
b School of Electronic Engineering, Xidian University, Xian 710000, China
c Business School, Xiangtan University, Xiangtan 411100, China

A R T I C L E I N F O

Keywords:
Time-dependent
Agile earth observation satellite scheduling
Parallel local search
Algorithm and operator adaptive selection
Frequent pattern mining

A B S T R A C T

To address the time-dependent agile earth observation satellite (AEOS) scheduling problem more
effectively, the frequent pattern-based parallel search (FPBPS) algorithm is proposed, which is
composed of a parallel local search procedure, a competition-based algorithm and operator
adaptive selection procedure and the new solutions construction method based on frequent
pattern. First, the algorithm and the operator are selected from the algorithm pool and operator
pool and run in parallel. As a result, some high-quality and diverse solutions are obtained in a
short time. Second, we update the probability of each algorithm and operator to strengthen the
self-adaptive ability of the algorithm. Third, frequent pattern mining method is used to extract
knowledge with respect to AEOS scheduling to construct new solutions, and parallel local search
is applied to further improve these solutions. Finally, extensive experiments prove that the FPBPS
algorithm has a better performance than other comparison algorithms in the quality of solution,
computation time, and robustness.

1. Introduction

The earth observation satellite (EOS) has the advantages of wide coverage, long imaging time, and no border restrictions, which
play an increasingly important role in economic development, disaster relief and emergency monitoring [1]. With the continuous
improvement of the satellite hardware level, the number of requirements specified by users also increases. To meet diversified and
large-scale observation requirements, efficient satellite task scheduling technology is particularly crucial [2].

In Fig. 1, the EOS only has one degree of rolling, which leads the execution duration of tasks is equal to the length of visible time
window (VTW). The satellite can only observe the target in the VTW. Different from EOS, the AEOS has three degrees, which are
rolling, pitching, and yawing. As a result, the execution duration of tasks is shorter than the length of the VTW, the start time of tasks
need to be determined, which increases the difficulty in solving the AEOS scheduling problem [23].

It has been proved that the AEOS task scheduling problem is NP-hard [4]. The rule is a common method for solving this problem in
the industrial circle, which has low computational complexity and strong interpretability [5–6]. The rule includes the length of VTW,
imaging quantity, remaining observation opportunities and other properties [7–10]. Generally, the quality of solutions generated by

* Corresponding authors.
E-mail addresses: 451480978@qq.com (Y. Chen), xing2999@qq.com (L. Xing).

1 These authors contributed equally to this work and should be considered co-first authors.

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

https://doi.org/10.1016/j.ins.2023.04.003
Received 26 July 2022; Received in revised form 24 March 2023; Accepted 2 April 2023

mailto:451480978@qq.com
mailto:xing2999@qq.com
www.sciencedirect.com/science/journal/00200255
https://www.elsevier.com/locate/ins
https://doi.org/10.1016/j.ins.2023.04.003
https://doi.org/10.1016/j.ins.2023.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2023.04.003&domain=pdf
https://doi.org/10.1016/j.ins.2023.04.003

Information Sciences 636 (2023) 118924

2

rule is not high.
In the academic circle, there are three main methods to solve the AEOS task scheduling problem, which are exact algorithm, meta-

heuristic algorithm and reinforcement learning (RL) [22]. The difficulty of exact algorithm is how to build linear programming model
for problem. the column generation [11], dynamic programming [12] and some other exact algorithms [13] are successfully used to
solve it. In theory, it can obtain the optimal solution in small-scale instances. However, as the scale increases, it will require
considerable time and cannot even solve the problem, which is unacceptable in the project. the core idea of meta-heuristic algorithm is
to find a better solution through neighbourhood operators or evolutionary operators in the process of search. Liu et al. designed the
new neighbourhoods combining some problem-specific destroy operators and repair operators to solve the AEOS scheduling problem
[14]. On this basis, He et al. added some assignment operators to solve the multi-AEOS collaborative scheduling problem [15]. Du et al.
used the historical scheduling plan to reduce the search space of algorithm, and sped up the convergence of the algorithm [3]. A greedy
randomized iterated local search algorithm was proposed by Peng et al., meanwhile, he designed a quick method for checking the
insertion positions [16]. In addition, the AEOS task scheduling under uncertain environment is also a focus of research [1718]. The
objective of the above algorithms is to maximize observation profit. The load balance degree is usually optimized as another objective
[19–21]. The last is the RL, which has been applied successfully to solve classical combinatorial optimization problems [23–25].
Therefore, some scholars tried to solve the AEOS task scheduling problem with RL. To address the satellites resource allocation, an
actor–critic algorithm was designed by Usaha et al. [26]. On this basis, Haijiao et al. used the same method to solve the online satellite
task scheduling problem [27]. He et al. built the markov decision process model for the task execution process, and used the Q-network
to solve it [1]. However, these works simplified the problem, and did not consider the complex constraints.

The meta-heuristic algorithm is selected in this paper. However, the low intelligence leads to a blind search and cannot guarantee
the quality of final solution. Recently, more and more scholars use artificial intelligence (AI) to improve the efficiency of algorithm
[28–30]. These improvements are mainly in the aspects of initial solution construction [31], neighbourhood selection [32], operator
design [33] and estimation of distribution algorithms [34]. To overcome the shortcoming of meta -heuristic in solving the AEOS task
scheduling problem, a frequent pattern-based parallel search algorithm (FPBPS) is proposed, which is composed of a parallel local
search procedure, competition-based algorithm and operator adaptive selection (Competition) procedure and the new solutions
construction method based on frequent pattern. First, we adopt the parallel local search to obtain diversified solutions with high-
quality in a short time. Then, the competition procedure is proposed to update the probability of each algorithm and operator in
FPBPS. Finally, to make full use of the high-quality solutions, we use a frequent pattern mining technique to extract problem-specific
knowledge and construct new solutions to guide the search of algorithm.

The paper has two contributions. One is that the paper proposes a new algorithm framework, which provides a new idea to combine
data mining with meta-heuristic algorithm. Meanwhile, the FPBPS can be modified to solve other time/order-dependent problems. The
other is that the paper defines the knowledge of the AEOS task scheduling problem. Extensive research tried to improve the quality of
solution from the perspective of algorithm capabilities, and ignored the feature the problem. This paper extracts the problem-specific
knowledge and designs the effective algorithm based on the knowledge to solve this problem.

In structure, this paper consists of five parts. In part 2, we describe the problem and related assumptions in detail, meanwhile, the
mathematical model is built. In part 3, we describe the principle the FPBPS algorithm and introduce each component in detail. In part
4, we design fifteen simulation scenarios and analyse the experimental results. In part 5, we give some conclusions and further work.

Fig. 1. Observation mode of EOS and AEOS [3].

J. Wu et al.

Information Sciences 636 (2023) 118924

3

2. Mathematical model

In the AEOS task scheduling, there are multiple meta-tasks. The purpose is to generate a task execution plan, which cannot violate
the constraints including maximum memory and maximum electricity and transition time. Meanwhile, the start time of task needs to
be determined. The objective of problem is to maximize the profit of scheduled tasks. The following assumptions are first are given
firstly.

1) Once a task is executed, it cannot be abandoned.
2) Satellites cannot execute multiple tasks simultaneously.
3) The task is meta-task in this paper, which can be executed at one time.

The parameters are divided into two parts: task properties and satellite properties.

1) Task properties.

T = {ti|1 ≤ i ≤ N} denotes the task set;
N: the number of tasks;
pi: the priority of task ti;
li: The execution duration of task ti;
mi: The memory consumed by ti every second;
ei: The electricity consumed by ti every second;

2) Satellite properties.

E: The maximum electricity of the satellite;
M: The maximum memory of the satellite;
γt ,πt ,φt: The rolling angles, pitching angles and yawing angles at time t, respectively;
w =

{
wij|1 ≤ i ≤ N, 1 ≤ j ≤ |wi|

}
denotes the VTW set;

|wi|: The number of VTW for task ti;
wij: The jth time window of task ti;
stij, etij,dij: The start time, end time and length of wij, respectively.
ef : The fixed electricity consumed in each attitude transition;
es: The electricity consumed per angle of attitude transition;
The AEOS task scheduling problem has two decision variables, one is the binary variable xij, it can be expressed by Formula (1).

Another is the start time of task uij.

xij =
{

1if tiissuccessfullyscheduledinwij
0otherwise ∀ti ∈ T,wij ∈ wi (1)

The model of AEOS task scheduling problem is built as follows.

Maximize
∑N

i=1

∑|wi |

j=1
xijpi (2)

Subject to

∀ti ∈ T,
∑|wi |

j=1
xij ≤ 1 (3)

∀ti ∈ T, stij ≤ uij ≤ uij + li ≤ etij, ifxij = 1 (4)

ρwijwi* j* =

{
1tiisthepredecessorof ti*

0otherwise ∀ti, ti* ∈ T (5)

∀ti, ti*∈ T,Δg = |γuij − γui* j* | + |πuij − πui* j* | + |φuij (6)

J. Wu et al.

Information Sciences 636 (2023) 118924

4

Fig. 2. Flowchart of the FPBPS algorithm.

J. Wu et al.

Information Sciences 636 (2023) 118924

5

Δ(ti, ti*) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

11.66Δg ≤ 10

a1 +
Δg
v1

10 < Δg ≤ 30

a2 +
Δg
v2

30 < Δg ≤ 60

a3 +
Δg
v3

60 < Δg ≤ 90

a4 +
Δg
v4

Δg > 90

(7)

∀ti, ti* ∈ T, i ∕= i*,wij ∈ wi,wi* j* ∈ wi* , uij + li +Δ(ti, ti*) ≤ ui* j* , ifρwijwi* j* = 1 (8)

∑N

i=1

∑|wi |

j=1
xijlimi ≤ M (9)

∀ti* ∈ T,wi* j* ∈ wi*
∑N

i=1

∑|wi |

j=1

(
xijliei + ρwijwi* j*ef + ρwijwi* j* Δges

)
⩽E (10)

1) Formula (3) represents that each task cannot be executed multiple times.
2) Formula (4) represents that the task must be executed within the VTW.
3) Formula (7) is piecewise function to calculate the transition time between tasks.v1 = 1.5◦/s, a1=5, v2= 2◦/s, a2=10, v3= 2.5◦/s,

a3=16, v4= 3◦/s, anda4 = 22 [16].
4) Formula (8) represents that any two tasks cannot violate the transition time constraint.
5) Formula (9) represents that the used memory cannot exceed maximum memory M.
6) Formula (10) represents that the used electricity cannot exceed maximum electricity E.

3. Related method

Fig. 2 is the flowchart of the FPBPS algorithm. The basic idea of the proposed FPBPS algorithm is to hybridize the different local
search algorithms and data mining. The FPBPS algorithm is composed of four parts: 1) an initialization procedure; 2) a parallel local
search procedure; 3) a competition-based algorithm and operator adaptive selection procedure; and 4) a new solutions construction
method based on frequent pattern.

Algorithm 1: FPBPS

Input: The tasks set T; the algorithm pool A; the operator pool O; the elite set UX, number of threads nt; the algorithm set UA; the operator set UO; the max size of elite
set K; the set of probability for algorithm PA; the set of probability for operator Po; the set of frequent patterns UFP; a termination condition.

Output: The solution X
1. UI← Generate multiple initial solutions//Initialization (Section 3.1)
2. Initialize UX ,UA,UO,PA,Po ,UFP

3. While the termination condition is not satisfied do
4. //Parallel local search (Section 3.2)
5. Use the roulette strategy to select an initial solution from UI

6. Each thread selects an algorithm from algorithm pool A based on PA

7. Select a removal operator R and a sorting operator I from operator pool O based on Po

8. X′←Construct a new solution I(R(X))
9. If the condition for accepting the new solution X′ is satisfied then
10. X←X′

11. End if
12. UX ←Update the elite set UX with X′

13. UO ←Record the operator R and I in UO

14. //Competition-based algorithm and operator adaptive selection (Section 3.3)
15. UX←Merge the elite set from each thread
16. PA, Po ←Update the PA and Po

17. //New solutions construction method based on frequent pattern (Section 3.4)
18. Transform the elite set UX to a suitable pattern for AEOS scheduling
19. UFP ← Frequent pattern mining with FP-growth
20. UI← Construct new solutions with UFP

21. End while
22. Return X

The FPBPS algorithm starts from multiple initial solutions, which are provided by the initialization procedure (Section 3.1) and assigns
an initial solution to each thread. Lines 4–21 is the main loop of the FPBPS algorithm. Each thread selects an algorithm, a

J. Wu et al.

Information Sciences 636 (2023) 118924

6

neighbourhood operator based on probability independently (Lines 6–14). Next, the main thread merges the elite set from each thread
and updates the probability of each algorithm and operator (Lines 16–17). Finally, the frequent pattern mining is worked on the elite
set to mine the problem-specific patterns and construct new solutions. The new solutions are assigned to different threads for next-
round optimization (Lines 19–21). The process is repeated until a termination condition is satisfied. This paper gives two termina-
tion conditions, which are the maximum iterations and the consecutive number of generations without improvement.

3.1. Initialization procedure

A high-quality initial solution has the significant impact on the final solution. Three heuristic rules are adopted to sort tasks in this
paper, which are earliest start time, priority and the number of VTW. the arranged tasks are inserted into the empty plan one by one, if
the task can be inserted without violating constraints, the task is started as early as possible. Otherwise, it will be abandoned.

3.2. Parallel local search procedure

Fig. 3 is the flowchart of parallel local search procedure. The parallel local search procedure is the first part of the main loop. In the
process of search, each thread selects an algorithm and a neighbourhood operator to construct a new solution independently. In the
search process, an elite set is maintained to record the high-quality solutions continually, and operators that construct new solutions
are recorded in the operator set. The algorithm pool and operator pool are described in detail as follows.

3.2.1. Algorithm pool
The algorithm tool provides different local search algorithms for each thread. At the beginning, the probability that the local search

algorithms are allocated to each thread is the same, and it is updated continuously in subsequent iterations. Three improved local
search algorithms are added to the algorithm pool, which are improved hill climbing (IHC), improved tabu search (ITS), and improved
simulated annealing (ISA).

Fig. 3. Flowchart of parallel local search.

J. Wu et al.

Information Sciences 636 (2023) 118924

7

Algorithm 2: IHC.
Input: The initial solutions UI, objective function F(X), the max size of elite set K, operator pool O, a termination condition
Output: The current solution X, the elite set UX, the operator set UO

1. UX, UO = Ø
2. X← Choose an initial solution from the UI

3. Repeat
4. R, I ←Select a removal operator R and a sorting operatorIfrom operator pool O according to probability
5. X′←I(R(X))
6. If X′ in UX then

First in first out
7. Replace the same solution in UX with X′

8. Record the operator R andIin UO

9. Else:
10. If the size of elite set UX < K then
11. Record the current solution X′ in UX

12. Record the operator R and I in UO

13. Else:
14. FindX*←argmin{F(X) : X ∈ UX}

15. If F(X′) ≥ F(X*)

16. ReplaceX* by X′

17. Record the operator Rand I in UO

18. End if
19. End if
20. End if
21. If F(X′) ≥ F(X) then
22. X←X′

23. End if
24. Until termination condition is satisfied
25. Return X,UX ,UO

In Algorithm 2, a neighbourhood operator combining a removal operator and sorting operator is applied to construct the new solution
(Lines 4–5). In the neighbourhood operator, some tasks are first deleted from an initial solution through the removal operator. Then,
the unscheduled tasks and tasks deleted by a removal operator are sorted in a heuristic rule, and the insertion method is used to arrange
tasks in turn. The neighbourhood operator will be discussed in Section 3.2.2. Next, the algorithm enters the procedure that updates the
elite set (Lines 6–20). In this procedure, we first check whether the new solution X′ is in the elite set, and if so, we use first-in-first-out
(FIFO) to update the elite set and operator set (Lines 6–8). Otherwise, the new solution X′ is inserted into the elite set if one of the
following two conditions is satisfied: 1) if the size of elite set is less than threshold K, the new solution is added directly to the elite set
(Lines 10–12); and 2) if the size of the elite set is K and F(X′) ≥ F(X*), where X* is argmin{F(X) : X ∈ UX}, the solution X* is replaced by
X′. Subsequent algorithms will also adopt this method to update the elite set and operator set. In Lines 21–22, the condition that it is
accepted is F(X′) ≥ F(X).

Algorithm 3: ITS

Input: The initial solutions UI, objective function F(X), the max size of elite set K, operator pool O, tabu set UT , tabu size t, a termination condition
Output: The current solution X, the elite set UX, the operator set UO

1. UX, UO, UT = Ø
2. X← Choose an initial solution from the UI

3. Repeat
4. R, I ←Select a removal operator R and a sorting operatorIfrom operator pool O based on probability
5. X′←I(R(X))
6. If X′ in UX then

First in first out
7. Replace the same solution in UX with X′

8. Record the operator R andIin UO

9. Else:
10. If the size of elite set UX < K then
11. Record the current solution X′ in UX

12. Record the operator R and I in UO

13. Else:
14. FindX*←argmin{F(X) : X ∈ UX}

15. If F(X′) ≥ F(X*)

16. ReplaceX* by X′

17. Record the operator Rand I in UO

18. End if
19. End if
20. End if
21. If F(X′) ≥ F(X) then
22. X ←X′

23. Update the tabu set UT with the tasks by the sorting operator I

(continued on next page)

J. Wu et al.

Information Sciences 636 (2023) 118924

8

(continued)

24. Else:
25. Update the tabu set UT with the tasks by the removal operator R
26. End if
27. Until termination condition is satisfied
28. Return X,UX ,UO

Based on Algorithm 2, an improved tabu search for AEOS scheduling is proposed. In each iteration, if the new solution is accepted, the
tasks that are inserted into the new solution are forbidden to be deleted for the next t iterations (Line 23), otherwise, the tasks that are
deleted from the current plan are forbidden to be deleted for the next t iterations (Line 25). Meanwhile, if the number of deleted tasks is
less than the threshold, the remaining tasks are selected to be deleted randomly until the number is satisfied. The tabu strategy is also
applied to Algorithm 4.

Algorithm 4: ISA

Input: The initial solutions UI, objective function F(X), the max size of elite set K, operator pool O, tabu set UT , tabu size t, initial temperature Tinit , cooling
coefficientc, a termination condition

Output: The current solution X, the elite set UX, the operator set UO

1. UX, UO, UT = Ø
2. T = Tinit

3. X← Choose an initial solution from the UI

4. Repeat
5. R, I ←Select a removal operator R and a sorting operatorIfrom operator pool O according to probability
6. X′←Construct a new solution I(R(X))
7. If X′ in UX then

First in first out
8. Replace the same solution in UX with X′

9. Record the operator R andIin UO

10. Else:
11. If the size of elite set UX < K then
12. Record the current solution X′ in UX

13. Record the operator R and I in UO

14. Else:
15. FindX*←argmin{F(X) : X ∈ UX}

16. If F(X′) ≥ F(X*)

17. ReplaceX* by X′

18. Record the operator Rand I in UO

19. End if
20. End if
21. End if
22. If F(X′) ≥ F(X) then
23. X ←X′

24. Update the tabu set UT with the tasks by the sorting operator I
25. Else:
26. If random(0,1)〈p then
27. X ←X′

28. Update the tabu set UT with the tasks by the sorting operator I
29. Else:
30. Update the tabu set UT with the tasks by the removal operator R
31. End if
32. End if
33. T = T*c
34. Until termination condition is satisfied
35. Return X, UX, UO

In Lines 22–31, if F(X′

) ≥ F(X), the current solution will be updated by X′ in the next iteration. If F(X′

)〈F(X), the new solution is
accepted based on p. In this paper, p is set as follows:

p = exp
{

100
T

(
F(X ′

) − F(X)
F(X)

)}

(11)

where T is the temperature, and a linear simulated annealing method T = T*c is used to update the temperature in each iteration. c is
the annealing coefficient. The value of initial temperature Tinit is the same as reference [15], and Xo is the initial solution.

Tinit =
− 0.05
ln0.5

*F(Xo) (12)

3.2.2. Operator pool
The neighbourhood operators are used to construct new solution in the FPBPS, which combine different removal operators and

J. Wu et al.

Information Sciences 636 (2023) 118924

9

sorting operators. The method is as follows. First, the removal operator is selected to remove some tasks from the current solution.
Next, the rest tasks are sorted by sorting operators. Finally, the fast insertion (FI) method is applied to insert the rest tasks into
destroyed solution one by one. We briefly introduce the complexity of these operators and the FI method in this paper, more details can
be found in the reference [15]. Table 1 shows the time complexity of removal operators and sorting operators.

In the FI method, the time slack strategy is used to judge the feasibility of inserting a task into each position of the destroyed
solution. Time slack is the latest time that a task can be postponed. In AEOS scheduling problem, the latest start time of a task depends
on its successor tasks, so we adopt a backwards propagation mode to calculate the time slack. The destroyed plan dp = {t1, t2⋯tm} has
m tasks, and the latest start time of task ti is calculated by Formula 13.

ulatei =

{
min{(ulatei+1 − TransitionTime(ti, ti− 1) − di− 1), ei− 1}, 1 ≤ i < m

ei, i = m
(13)

In Fig. 4, a task is inserted into the position between tasks tm− 2 and tm− 1, and the start time of tm− 1 is postponed to stm− 1. This position
is feasible if stm− 1 is earlier than ulate

m− 1. However, when inserted into the position between tasks tm− 1 and tm, stm is later than ulate
m , and the

position is abandoned. The transition time increment when task ti is inserted at each position in pti is calculated, and the best position is
selected to minimize the transition time increment.

3.3. Competition-based algorithm and operator adaptive selection

The competition procedure is the third part in FPBPS, which is used to evaluate the contribution of algorithms, removal operators
and sorting operators with the purpose of updating the probability in the next iteration. The process of the competition strategy is

Table 1
The time complexity of operators.

Time complexity

Removal operators Random removal operator O(n)
Min profit removal operator O(nlogn)
Min unit profit removal operator O(nlogn)
Max transition time removal operator O(nlogn)
Max opportunity removal operator O(nlogn)
Max conflict removal operator O(nlogn)
Worst route removal operator O(n)
Worst route removal operator O(n)

Sorting operators Random sorting operator O(n)
Max profit sorting operator O(nlogn)
Max unit profit sorting operator O(nlogn)
Min transition time sorting operator O(nlogn)
Min opportunity sorting operator O(nlogn)
Min conflict sorting operator O(nlogn)
Min distance sorting operator O(nlogn)

Fig. 4. The FI method.

J. Wu et al.

Information Sciences 636 (2023) 118924

10

described in detail as follows.
Step 1: Generate the historical optimal solution set. The elite sets obtained by nT threads are represented by U1

x , U2
x…, UnT

x , and the
optimal solution set is UX =

⋃nT
i=1Ui

x.
Step 2: Sort the historical optimal solution set UX in descending order of objective value.
Step 3: Let the size of the current optimal solution set PX be nP, and PX can be generated according to the formula:

PX =

{
{Xi|Xi ∈ UX , i ≤ nP}, |UX | ≥nP

UX , |UX | < nP
(14)

Step 4: Update the probability of algorithms, removal operators and sorting operators in the next iteration. We record the algo-
rithm, removal operator and sorting operator that create each solution in PX. Suppose the i-th algorithm in the algorithm pool has
contributed ni

A solutions to PX, the i-th removal operator has contributed ni
R solutions to PX, and the i-th sorting operator has

contributed ni
I solutions to PX. Then, the contributions of the i-th algorithm ci

A, removal operator ci
R, and sorting operator ci

I can be
expressed by the following formulas:

ciA =
niA
nP
, i ∈ Algorithm pool (15)

ciR =
niR
nP
, i ∈ Removal operator pool (16)

ciI =
niI
nP
, i ∈ Sorting operator pool (17)

The probability of the ith algorithm Pi
A, removal operator Pi

R, and sorting operator Pi
I can be expressed by the following formulas:

PiA = PiA*(1 − ∂)+ niA
nP

*∂, i ∈ Algorithm pool (18)

Fig. 5. Transformation procedure.

Fig. 6. Construction of FP-tree.

J. Wu et al.

Information Sciences 636 (2023) 118924

11

PiR = PiR*(1 − ∂)+ niR
nP

*∂, i ∈ Removal operator pool (19)

PiI = PiI*(1 − ∂)+ niI
nP

*∂, i ∈ Sorting operator pool (20)

Table 2
Algorithm parameters.

Parameter Assignment

FPBPS ALNS/TPF ALNS/I

Percentage of destroyed tasks 10% 10% 10%
Annealing coefficient 1000^(1/1000) 1000^(1/1000) 1000^(1/1000)
Tabu list length 0.1*N 0.1*N 0.1*N
Maximum number of elites 50 – –
Maximum number of generations 100 500 500
Maximum consecutive number of generations without improvement 50 50 50
Rate of historical probability 0.5 0.5 0.5
Number of solutions for frequent pattern mining 10 – –
Minimum support 0.2 – –
Number of threads 5 – –

Table 3
Experimental results with different algorithms.

ID Number of tasks Profit rate (%)

FPBPS ALNS/TPF ALNS/I

Min Avg Max Min Avg Max Min Avg Max

Scenario 1 50 100% 100% 100% 100% 100% 100% 100% 100% 100%
Scenario 2 75 100% 100% 100% 97.30% 99.46% 100% 98.11% 99.76% 100%
Scenario 3 100 100% 100% 100% 89.52% 95.56% 98.40% 91.47% 95.58% 98.22%
Scenario 4 125 97.39% 99.00% 99.85% 77.45% 89.68% 98.01% 83.13% 90.83% 95.40%
Scenario 5 150 93.68% 94.89% 96.07% 83.19% 89.32% 91.78% 82.96% 87.60% 90.46%
Scenario 6 175 91.37% 92.24% 93.08% 83.55% 86.39% 88.97% 83.35% 84.57% 88.87%
Scenario 7 200 83.33% 84.46% 85.86% 64.89% 77.90% 83.15% 71.35% 74.66% 80.24%
Scenario 8 225 75.77% 79% 81.43% 67.32% 72.54% 74.94% 65.21% 69.87% 72.53%
Scenario 9 250 74.01% 75.78% 78.03% 60.01% 67.04% 70.69% 60.78% 65.33% 69.58%
Scenario 10 275 67.74% 70.28% 72.12% 56.41% 62.43% 65.42% 56.09% 61.12% 64.84%
Scenario 11 300 66.21% 67.80% 69.13% 51.52% 57.72% 65.97% 53.42% 58.75% 64.54%
Scenario 12 325 66.07% 68.56% 71.22% 57.45% 60.86% 64.17% 50.51% 58.84% 63.63%
Scenario 13 350 63.06% 64.80% 66.29% 52.57% 57.53% 62.28% 51.67% 54.34% 58.59%
Scenario 14 375 57.54% 60.96% 62.87% 45.79% 50.85% 54.69% 49.83% 52.80% 56.16%
Scenario 15 400 58.14% 59.90% 61.60% 50.14% 53.71% 58.29% 40.53% 51.70% 56.25%

Fig. 7. Values of profit rate.

J. Wu et al.

Information Sciences 636 (2023) 118924

12

where ∂ is the rate of historical probability, which prevents algorithms and operators from performing poorly in this round and not
participating in subsequent iterations. Initially, each algorithm and operator have the same probability.

3.4. New solutions construction method based on frequent pattern

New solutions construction based on frequent pattern is the last part in FPBPS. The frequent pattern mining method in this paper is
applied to mine specific patterns that often occur in high-quality solutions simultaneously. Then, new solutions are constructed based
on mined patterns [3536]. The main process includes the following three steps [37].

Step 1: Data transform. In AEOS task scheduling problem, the execution time of a task is depend on the previous task. Therefore, a
frequent pattern is defined, which is combination of adjacent tasks. The transform procedure is shown in Fig. 5.

Step 2: mining the frequent patterns. In this paper, we use the FP-growth to mine the knowledge with respect to the AEOS
scheduling. The main characteristic of FP-growth is to use the tree structure to store data, which is named by frequent pattern tree (FP-
tree). This structure can speed up the algorithm. Fig. 6 shows the construction of FP-tree.

Step 3: Constructing the new solutions based on the selected frequent patterns. We use the roulette strategy to select the high-
quality solutions to guide the construction process. Specifically, tasks in this solution that are not in the frequent pattern and un-
scheduled tasks are recognized, and the FI method (Section 3.2.2) is applied to insert the remaining tasks in turn until they cannot be
inserted. This process is repeated until the number of new solutions is equal to the number of threads. Finally, the constructed new
solutions are improved by parallel local search.

Table 4
Computation time with different algorithms.

ID Number of tasks Computation time (s)

FPBPS ALNS/TPF ALNS/I

Scenario 1 50 2.7 0.1 0.1
Scenario 2 75 5.8 1.1 1.0
Scenario 3 100 21.0 10.0 13.3
Scenario 4 125 43.0 34.9 29.2
Scenario 5 150 56.3 149.2 84.6
Scenario 6 175 71.6 122.2 119.1
Scenario 7 200 85.3 114.5 119.8
Scenario 8 225 107.2 120.9 167.2
Scenario 9 250 137.2 189.0 192.5
Scenario 10 275 143.8 219.3 200.3
Scenario 11 300 162.9 242.7 265.2
Scenario 12 325 184.5 329.3 310.9
Scenario 13 350 211.6 378.2 373.9
Scenario 14 375 249.9 391.2 454.3
Scenario 15 400 249.4 473.1 422.5

Fig. 8. Computation time.

J. Wu et al.

Information Sciences 636 (2023) 118924

13

Fig. 9. Stability of different algorithms.

J. Wu et al.

Information Sciences 636 (2023) 118924

14

4. Computational experiments

To evaluate the FPBPS algorithm, we first design the multiple experimental scenarios and set the values of parameters in the FPBPS
algorithm. Then, the FPBPS algorithm is compared with two state-of-the-art algorithms in the field of AEOS task scheduling, and the
performance of each algorithm is given in profit rate, running time and robustness. Moreover, we further analyse the impact of parallel
local search, frequent pattern mining and competition on the final solutions.

4.1. Experimental environment

Due to the differences arising from task, design and adopted technologies, the satellites used in different countries differ signifi-
cantly in terms of capabilities, constraints and management model, providing no benchmark for AEOS scheduling. We use the same
method proposed by Liu to design the AEOS scheduling scenarios [14]. In all scenarios, targets are distributed at 3oN-53oN and 74oE-
133oE. The scheduling period is from 2013/04/20/00:00:00 to 2013/04/20/23:59:59, and the number of orbits is sixteen. Fifteen
scenarios are designed, in which the number of tasks is ranges from 50 to 400 in steps of 25.

The values of parameters in FPBPS algorithm and two comparison algorithms are listed in Table 2. The two comparison algorithms
are ALNS/I [14] and ALNS/TPF [38], which had been proven to be effective in solving the AEOS scheduling problem. Due to the
parallel strategy is used in the FPBPS algorithm, the assignment of parameters is the same except for the maximum number of gen-
erations. To show the comparison results more objectively, we use the same number of evaluations. The maximum number of gen-
erations of ALNS/TPF and ALNS/I are set to 500, and the maximum number of generations of FPBPS are set to 100 because the number
of threads is 5. All results are obtained by running the algorithm 10 times independently. All algorithms are coded in Python 3.7.6, and
the experiments are conducted using an Intel (R) Core (TM) i5-8250U CPU 1.80 GHz under Windows Server 2010 with 8 GB RAM.

Table 5
The standard deviation of results.

ID Number of tasks Standard deviation

FPBPS ALNS/TPF ALNS/I

Scenario 2 75 0 0.012190787 0.006020437
Scenario 3 100 0 0.027414652 0.020956973
Scenario 4 125 0.007275179 0.060201639 0.035676135
Scenario 5 150 0.00663428 0.03282644 0.024651716
Scenario 6 175 0.005439483 0.018379682 0.020608792
Scenario 7 200 0.00855887 0.053018271 0.02524118
Scenario 8 225 0.018264195 0.026294905 0.027218219
Scenario 9 250 0.012866734 0.039045463 0.030635282
Scenario 10 275 0.013857893 0.02495211 0.02945132
Scenario 11 300 0.009533829 0.041415634 0.034567259
Scenario 12 325 0.014488327 0.024872544 0.038667443
Scenario 13 350 0.0095685 0.032790317 0.023267182
Scenario 14 375 0.015483341 0.036944235 0.02214491
Scenario 15 400 0.010384213 0.026131903 0.042041882

Table 6
The influence of frequent pattern mining on profit rate.

ID Number of tasks Profit rate (%)

PLS FPBPS

Scenario 1 50 100% 100%
Scenario 2 75 100% 100%
Scenario 3 100 98.29% 100%
Scenario 4 125 95.40% 99.00%
Scenario 5 150 91.38% 94.89%
Scenario 6 175 88.05% 92.24%
Scenario 7 200 79.19% 84.47%
Scenario 8 225 73.43% 79%
Scenario 9 250 69.67% 75.78%
Scenario 10 275 64.73% 70.28%
Scenario 11 300 62.94% 67.80%
Scenario 12 325 62.42% 68.59%
Scenario 13 350 58.55% 64.80%
Scenario 14 375 57.54% 60.96%
Scenario 15 400 56.42% 59.90%

J. Wu et al.

Information Sciences 636 (2023) 118924

15

4.2. Experimental results

The solution quality of three algorithms is shown in Table 3 and Fig. 7. The profit rate is proposed to evaluate the quality of so-
lution, which is the profit of scheduled tasks divided by the total profit. In Table 3, this paper represents the minimum value, average
value and maximum value of each algorithm. When the scale of tasks is 50 or 100, there is no significant difference in the profit rate. As
the scale increases, the gap between algorithms is becoming more and more obvious. The FPBPS algorithm can get the best profit rate
in all algorithms. This is due to the parallel local search and frequent pattern mining are integrated into the FPBPS algorithm, which
can provide a competitive result on the larger-scale task scenarios. The influence of parallel local search and frequent pattern mining
on the experimental results will be discussed below. In conclusion, we can find that the performance of the FPBPS algorithm is very
well in solving the AEOS scheduling problem.

The computation time of each algorithm is shown in Table 4 and Fig. 8. Since the FPBPS algorithm adopts a parallel architecture,
the interaction between threads takes some time. As a result, when the task scale is small, the advantage of the proposed approach in
running time is not outstanding. But, when the number of tasks is 150, the computation time of the FPBPS algorithm is shorter than
other algorithms. The computation time of the FPBPS algorithm increases slowly with the increasing number of tasks. One of the most
important reasons is the frequent pattern mining procedure, which can help the FPBPS algorithm converge quickly.

Another advantage of the FPBPS is that it has good robustness. In Fig. 9, we can find that the proposed FPBPS algorithm is more
stable than other algorithms in most scenarios. The standard deviation of profit rate is shown in Table 5, the FPBPS has the minimum
value of standard deviation in all scenarios.

In summary, the FPBPS takes the shortest time and has the highest-quality solution in these three algorithms. Meanwhile, when the
scale of tasks increases, the advantages of the FPBPS algorithm become more obvious. Meanwhile, the FPBPS has good robustness.
Next, we will analyse the role of parallel local search and frequent pattern mining in the FPBPS.

4.3. Further analysis

The parallel local search, new solutions construction method based on frequent pattern and the competition are analysed in detail.
Since the difference is not obvious on small-scale tasks, we analyse only the situation when the task scale exceeds 200.

We compare the results of the FPBPS algorithm and the PLS in profit rate and robustness in Table 6. From Table 6 and Fig. 10, we
can see that frequent pattern mining can significantly improve the value of profit rate, and the maximum increase is approximately 6%.
Meanwhile, the robustness of the algorithm is also improved as shown in Fig. 11. The most prominent feature of AEOS task scheduling

Fig. 10. The influence of frequent pattern mining on profit rate.

J. Wu et al.

Information Sciences 636 (2023) 118924

16

problem is time-dependent, that is, the execution of current task depends on the previous task to a large extent. The prior experiment
proved that the partial task sequences often occur in high-quality solutions simultaneously, which is known as frequent patterns in data
mining. The role of frequent patterns is to construct new solutions and guide the search of algorithm. Further, to directly reflect the
influence of frequent pattern-based new solution on the final result, the index RI is designed, which is calculated according to the
following formula.

RI =
numFP∩FI

numFP
(21)

Where numFP∩FI is the number of common tasks that appearing in the final solution and frequent patterns. numFP is the number of
tasks in the frequent pattern. Fig. 12 shows the value of RI in each scenario. From Fig. 12, we can find that the value of RI is high in each
scenario, which indicates that the proportion of the mined frequent patterns in the final solution is also very high. Since the new
solution is constructed based on the selected frequent patterns, the algorithm avoids invalid searches and the computational efficiency
is improved. Meanwhile, the final solution is highly similar to the frequent pattern, so the algorithm has high robustness.

Fig. 11. The influence of frequent pattern mining on robustness.

J. Wu et al.

Information Sciences 636 (2023) 118924

17

Fig. 12. The value of RI

Fig. 13. The influence of parallel architecture on profit rate.

Fig. 14. The influence of competition strategy on profit rate.

J. Wu et al.

Information Sciences 636 (2023) 118924

18

In the second part, we discuss the influence of the parallel architecture on the algorithm. We compare FPBPS with frequent pattern-
based local search-hill climbing (FPBLS-HC), frequent pattern-based local search-tabu search (FPBLS-TS) and frequent pattern-based
local search-simulated annealing (FPBLS-SA). Fig. 13 shows that FPBPS obtains a better profit rate than the other algorithms. This is
due to the local search algorithms running in parallel, which greatly make full play to the local optimization ability. Meanwhile,
parallel local search can obtain diverse and high-quality solutions through different search trajectories and provide better data for data
mining.

In the last part, the influence of the competition procedure on the quality of final solution is discussed. We compare FPBPS with
frequent pattern-based local search-no competition (FPBLS-NC). Fig. 14 shows that FPBPS obtains a better profit rate than the FPBLS-
NC in all scenarios. The competition procedure meets the algorithm’s requirements for self-adaptive ability by updating the probability
regularly. In the process of search, this procedure uses appropriate algorithms and operators, which provides an important guarantee
for the quality of final solutions. Fig. 15 shows the overall probability of each algorithm.

5. Conclusion and future work

In this paper, we propose the FPBPS algorithm to solve the AEOS scheduling problem. Firstly, different local algorithms run in
parallel manner. As a result, some high-quality and diverse solutions are obtained in a short time. Then, we regularly evaluate the
contribution of algorithms and operators and update the probability, which improves the self-adaptive of the FPBPS algorithm. Next,
the frequent pattern mining method is applied to extract knowledge with respect to AEOS scheduling and construct new solutions.
Finally, the experimental results prove that the proposed FPBPS algorithm can achieve better results than state-of-the-art comparison
algorithms at different task scales.

The current work can be expanded in two aspects: 1) integrating more meta-heuristic algorithms and machine learning algorithms
into the FPBPS algorithm; and 2) trying to solve different time/order dependent problems to verify the effectiveness of the FPBPS
algorithm.

CRediT authorship contribution statement

Jian Wu: Conceptualization, Methodology, Software. Feng Yao: Formal analysis. Yanjie Song: Formal analysis. Lei He: Vali-
dation. Fang Lu: Validation. Yonghao Du: Validation. Jungang Yan: Validation. Yuning Chen: Validation. Lining Xing: Project
administration. Junwei Ou: Formal analysis.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

This study is supported by the National Natural Science Foundation of China (71701203, 71901213, 72001212, 72271240),

Fig. 15. The probability of each algorithm.

J. Wu et al.

Information Sciences 636 (2023) 118924

19

Natural Science Foundation of Hunan (2022JJ30671), Special Project in Major Fields of Guangdong Universities (Grant No.
2021ZDZX1019), the National Natural Science Fund for Distinguished Young Scholars of China (61525304) and the Hunan Post-
graduate Research Innovation Project (CX20210031). It is also supported by the Science and Technology Innovation Team of Shaanxi
Province (2023-CX-TD-07).

References

[1] He, Y., Xing, L., Chen, Y., Pedrycz, W., Wang, L., & Wu, G. (2020). A generic Markov decision process model and reinforcement learning method for scheduling
agile earth observation satellites. IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[2] G. Peng, G. Song, L. Xing, A. Gunawan, P. Vansteenwegen, An exact algorithm for agile earth observation satellite scheduling with time-dependent profits,
Computers & Operations Research 120 (2020), 104946.

[3] Y. Du, T. Wang, B. Xin, L. Wang, Y. Chen, L. Xing, A data-driven parallel scheduling approach for multiple agile earth observation satellites, IEEE Transactions
on Evolutionary Computation 24 (4) (2019) 679–693.

[4] G. Peng, R. Dewil, C. Verbeeck, A. Gunawan, L. Xing, P. Vansteenwegen, Agile earth observation satellite scheduling: An orienteering problem with time-
dependent profits and travel times, Computers & Operations Research 111 (2019) 84–98.

[5] Chien, S. , Sherwood, R. , Tran, D. , Castano, R. , Cichy, B. , & Davies, A. , et al. (2003). Autonomous Science on the EO-1 Mission Abstract.
[6] H. Qiu, B. Zhao, W. Gu, R. Bo, Bi-level two-stage robust optimal scheduling for AC/DC hybrid multi-microgrids, IEEE Transactions on Smart Grid 9 (5) (2018)

5455–5466.
[7] Chien, S., Tran, D., Rabideau, G., Schaffer, S., Mandl, D., & Frye, S. (2009). Planning Operations of the Earth Observing Satellite EO-1: Representing and

reasoning with spacecraft operations constraints. In Proc. 6th Int. Workshop Plan. Scheduling Space (IWPSS) (pp. 1-8).
[8] Cichy, B. , Chien, S. , Rabideau, G. , & Tran, D. . (2004). Validating the autonomous EO-1 science agent. International Workshop on Planning and Scheduling for

Space. Pasadena, CA : Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2004.
[9] B. Wille, M.T. Wörle, C. Lenzen, Vamos – verification of autonomous mission planning on-board a spacecraft, IFAC Proceedings Volumes 46 (19) (2013)

382–387.
[10] K.A.M. Goetz, F. Huber, M.V. Schoenermark, Vimos - autonomous image analysis on board of biros, IFAC Proceedings Volumes 46 (19) (2013) 423–428.
[11] N. Bianchessi, J.F. Cordeau, J. Desrosiers, G. Laporte, V. Raymond, A heuristic for the multi-satellite, multi-orbit and multi-user management of earth

observation satellites, European Journal of Operational Research 177 (2) (2007) 750–762.
[12] X. Chu, Y. Chen, Y. Tan, A branch and bound algorithm for agile earth observation satellite scheduling, Advances in Space Research 2017 (9) (2017) 1–15.
[13] G. Wu, Q. Luo, X. Du, Y. Chen, P.N. Suganthan, X. Wang, Ensemble of Metaheuristic and Exact Algorithm Based on the Divide-and-Conquer Framework for

Multisatellite Observation Scheduling, IEEE Transactions on Aerospace and Electronic Systems 58 (5) (2022) 4396–4408.
[14] X. Liu, G. Laporte, Y. Chen, R. He, An adaptive large neighborhood search metaheuristic for agile satellite scheduling with time-dependent transition time,

Computers & Operations Research 86 (2017) 41–53.
[15] L. He, X. Liu, G. Laporte, Y. Chen, Y. Chen, An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling, Computers &

Operations Research 100 (2018) 12–25.
[16] Peng, G., Song, G., He, Y., Yu, J., Xiang, S., Xing, L., & Vansteenwegen, P. (2020). Solving the agile earth observation satellite scheduling problem with time-

dependent transition times. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
[17] Han, C., Gu, Y., Wu, G., & Wang, X. (2022). Simulated Annealing-Based Heuristic for Multiple Agile Satellites Scheduling Under Cloud Coverage Uncertainty.

IEEE Transactions on Systems, Man, and Cybernetics: Systems.
[18] X. Wang, Y. Gu, G. Wu, J.R. Woodward, Robust scheduling for multiple agile Earth observation satellites under cloud coverage uncertainty, Computers &

Industrial Engineering 156 (2021), 107292.
[19] L. Wei, L. Xing, Q. Wan, Y. Song, Y. Chen, A multi-objective memetic approach for time-dependent agile earth observation satellite scheduling problem,

Computers & Industrial Engineering 159 (2021), 107530.
[20] Y. Du, L. Xing, J. Zhang, Y. Chen, Y. He, MOEA based memetic algorithms for multi-objective satellite range scheduling problem, Swarm and Evolutionary

Computation 50 (2019), 100576.
[21] J. Zhang, L. Xing, G. Peng, F. Yao, C. Chen, A large-scale multiobjective satellite data transmission scheduling algorithm based on SVM+ NSGA-II, Swarm and

Evolutionary Computation 50 (2019), 100560.
[22] F. Wang, X. Wang, S. Sun, A reinforcement learning level-based particle swarm optimization algorithm for large-scale optimization, Information Sciences 602

(2022) 298–312.
[23] K. Li, T. Zhang, R. Wang, Deep reinforcement learning for multiobjective optimization, IEEE transactions on cybernetics 51 (6) (2020) 3103–3114.
[24] Lu, H., Zhang, X., & Yang, S. (2019, September). A learning-based iterative method for solving vehicle routing problems. In International conference on learning

representations.
[25] Y. Wei, M. Zhao, A reinforcement learning-based approach to dynamic job-shop scheduling, Acta Automatica Sinica 31 (5) (2005) 765.
[26] W. Usaha, J.A. Barria, Reinforcement learning for resource allocation in LEO satellite networks, IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics) 37 (3) (2007) 515–527.
[27] W.A.N.G. Haijiao, Y.A.N.G. Zhen, Z.H.O.U. Wugen, L.I. Dalin, Online scheduling of image satellites based on neural networks and deep reinforcement learning,

Chinese Journal of Aeronautics 32 (4) (2019) 1011–1019.
[28] E.G. Talbi, Machine learning into metaheuristics: a survey and taxonomy, ACM Computing Surveys 54 (6) (2021) 1–32.
[29] M. Karimi-Mamaghan, et al., Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art, European

Journal of Operational Research 296 (2) (2022) 393–422. “.
[30] F. Arnold, K. Sörensen, What makes a VRP solution good? The generation of problem-specific knowledge for heuristics, Computers & Operations Research 106

(2019) 280–288.
[31] Kazimipour, B., Li, X., & Qin, A. K. (2014, July). A review of population initialization techniques for evolutionary algorithms. In 2014 IEEE congress on

evolutionary computation (CEC) (pp. 2585-2592). IEEE.
[32] M. Guerine, I. Rosseti, A. Plastino, Extending the hybridization of metaheuristics with data mining: Dealing with sequences, Intelligent Data Analysis 20 (5)

(2016) 1133–1156.
[33] M.M. Drugan, Reinforcement learning versus evolutionary computation: A survey on hybrid algorithms, Swarm and evolutionary computation 44 (2019)

228–246.
[34] Yu, S., Aleti, A., Barca, J. C., & Song, A. (2018, June). Hyper-heuristic online learning for self-assembling swarm robots. In International Conference on

Computational Science (pp. 167-180). Springer, Cham.
[35] Zhou, Y., Hao, J. K., & Duval, B. (2020). Frequent pattern-based search: a case study on the quadratic assignment problem. IEEE Transactions on Systems, Man,

and Cybernetics: Systems.
[36] D. Martins, G.M. Vianna, I. Rosseti, S.L. Martins, A. Plastino, Making a state-of-the-art heuristic faster with data mining, Annals of Operations Research 263 (1)

(2018) 141–162.
[37] J. Wu, B. Song, G. Zhang, J. Ou, Y. Chen, F. Yao, L. Xing, A data-driven improved genetic algorithm for agile earth observation satellite scheduling with time-

dependent transition time, Computers & Industrial Engineering 174 (2022), 108823.
[38] L. He, M. de Weerdt, N. Yorke-Smith, Time/sequence-dependent scheduling: the design and evaluation of a general purpose tabu-based adaptive large

neighbourhood search algorithm, Journal of Intelligent Manufacturing 31 (4) (2020) 1051–1078.

J. Wu et al.

http://refhub.elsevier.com/S0020-0255(23)00494-2/h0010
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0010
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0015
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0015
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0020
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0020
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0030
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0030
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0045
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0045
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0050
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0055
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0055
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0060
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0065
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0065
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0070
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0070
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0075
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0075
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0090
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0090
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0095
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0095
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0100
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0100
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0105
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0105
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0110
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0110
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0115
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0125
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0130
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0130
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0135
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0135
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0140
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0145
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0145
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0150
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0150
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0160
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0160
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0165
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0165
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0180
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0180
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0185
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0185
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0190
http://refhub.elsevier.com/S0020-0255(23)00494-2/h0190

	Frequent pattern-based parallel search approach for time-dependent agile earth observation satellite scheduling
	1 Introduction
	2 Mathematical model
	3 Related method
	3.1 Initialization procedure
	3.2 Parallel local search procedure
	3.2.1 Algorithm pool
	3.2.2 Operator pool

	3.3 Competition-based algorithm and operator adaptive selection
	3.4 New solutions construction method based on frequent pattern

	4 Computational experiments
	4.1 Experimental environment
	4.2 Experimental results
	4.3 Further analysis

	5 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

