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A B S T R A C T

Reinforcement Learning (RL) has emerged as a highly effective technique for addressing various scientific
and applied problems. Despite its success, certain complex tasks remain challenging to be addressed solely
with a single model and algorithm. In response, ensemble reinforcement learning (ERL), a promising approach
that combines the benefits of both RL and ensemble learning (EL), has gained widespread popularity. ERL
leverages multiple models or training algorithms to comprehensively explore the problem space and possesses
strong generalization capabilities. In this study, we present a comprehensive survey on ERL to provide readers
with an overview of recent advances and challenges in the field. Firstly, we provide an introduction to the
background and motivation for ERL. Secondly, we conduct a detailed analysis of strategies such as model
selection and combination that have been successfully implemented in ERL. Subsequently, we explore the
application of ERL, summarize the datasets, and analyze the algorithms employed. Finally, we outline several
open questions and discuss future research directions of ERL. By offering guidance for future scientific research
and engineering applications, this survey significantly contributes to the advancement of ERL.
1. Introduction

Over the past several decades, reinforcement learning (RL) methods
have proven to be highly effective in solving complex problems across
various fields, including gaming, robotics, and computer vision. With
the emergence of breakthroughs such as deep Q neural networks [1],
AlphaGo [2], video games [3,4], and robotic control tasks [5], RL
has witnessed a revitalization that outperforms human performance.
The success of this approach is attributed to the agent’s ability to
automate feature acquisition and accomplish end-to-end learning. Ar-
tificial neural networks (ANN) and gradient descent further enhance
RL’s exploration and exploitation capabilities, rendering it suitable for
handling laborious manual work or challenging tasks.

Nevertheless, each type of RL possesses distinct advantages and
limitations. For instance, deep reinforcement learning (DRL) requires
extensive training to obtain a policy [4], thereby introducing additional
challenges such as overfitting [6], error propagation [7], and imbalance
between exploration and exploitation [8]. These challenges motivate
researchers to design models or training algorithms. One approach is
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implementing ensemble learning (EL) into the RL framework, which
enhances algorithmic learning and representation abilities (see Fig. 1).
The method known as ensemble reinforcement learning (ERL) has
demonstrated exceptional performance across various applications. The
concept of EL was initially exemplified by Marquis de Condorcet [9],
who showed that average voting outperforms individual model deci-
sions. The subsequent studies conducted by Krogh and Vedelsby [10],
Breiman [11], and other researchers have theoretically demonstrated
the significant advantages of ensemble methods from various perspec-
tives. The success of ensemble methods in the field of deep learning
(DL) and RL can be attributed to three factors: the decomposition of
datasets [12], powerful learning capabilities [13], and diverse ensemble
methods [11].

The ERL method can be categorized according to different criteria.
The constituent elements allow for the classification of ERL into high-
level ensembles [14] and low-level ensembles [15]. ERL can also be
classified as single-agent ERL [16] and multi-agent ERL [17] based
on the number of agents involved. Moreover, centralized ERL [18]
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Fig. 1. Components of the ERL method. The two components EL and RL are combined
to form ERL.

and distributed ERL [19] are classifications of ERL based on how the
agents work. Fig. 2 presents a taxonomy according to agent cooperation
and method deployment. All of these taxonomies are reasonable and
can serve as reference frameworks for designing new ERL methods.
The utilization of existing frameworks enables researchers to rapidly
develop novel ERL methods. Additionally, comprehending the impact
of strategies can assist researchers in directing their focus towards
specific strategy design. In this paper, we provide a detailed description
of ERL methods according to the improvement strategies used and
discuss their applications to guide the design of new methods.

The literature on ERL encompasses a broad spectrum of related
work, including training algorithms, ensemble strategies, and applica-
tion domains. This paper aims to provide readers with a systematic
overview of the existing research, current progress, and valuable con-
clusions achieved in this field. To the best of our knowledge, this is
the first survey focusing solely on ensemble reinforcement learn-
ing. In this survey, we present the strategies employed in ERL and its
associated applications, deliberate upon various unresolved inquiries,
and offer a roadmap for future exploration in the realm of ERL. Ap-
proaching from this perspective enables readers to swiftly comprehend
the ERL methodology while also facilitating the design and enhance-
ment of tailored ERL approaches for specific problems or application
scenarios.

The remainder of this paper is structured as follows. Section 2
presents the background of ensemble reinforcement learning methods.
Section 3 introduces implementation strategies in ERL. Section 4 dis-
cusses the application of ERL to different domains. Section 4 discusses
the datasets and compares methods used in the ERL-related studies.
Section 5 discusses several open questions and possible future research
directions. Section 7 gives the conclusion of this paper (See Fig. 3).

2. Background

To enhance readers’ comprehension of ensemble reinforcement
learning methods, this section presents a concise overview of RL, EL,
and ERL.

2.1. Reinforcement learning

Reinforcement learning is an artificial intelligence method in which
an agent interacts with an environment and makes decisions iteratively
to rectify errors, aiming to achieve optimal decision-making. Agent, the
core of RL, is an entity that is capable of sensing the environment, mak-
ing decisions, and taking actions. Besides, the Markov Decision Process
(MDP) forms the foundation for using RL to solve problems [20]. The
2

RL approach is applicable when an agent’s decision-making process
is only related to the current state and not to the previous state.
Fig. 4 illustrates the agent–environment interaction process. A tuple
⟨𝑆,𝐴, 𝑃 ,𝑅, 𝛾⟩ can represent the MDP, where 𝑆 denotes the state, 𝐴
denotes the action, 𝑃 ∶ 𝑆 ×𝐴 → 𝑃 (𝑆) denotes the state transfer matrix
with the probability value 𝑝(𝑠′ ∣ 𝑠) = 𝑝(𝑆𝑡+1 = 𝑠′ ∣ 𝑆𝑡 = 𝑠), 𝑅 ∶ 𝑆×𝐴 → R
enotes the reward function, and 𝛾 ∈ [0, 1] denotes the discount factor.
he agent’s state at time step 𝑡 is 𝑠𝑡, and it will take the action 𝑎𝑡.
he policy 𝜋 is defined by the combination of all states and actions,
hile the Q-value evaluates the expected reward obtained by the agent

ollowing policy 𝜋.

𝜋 (𝑠, 𝑎) = E𝜋

[ ∞
∑

𝑡=0
𝛾 𝑡𝑅(𝑠𝑡, 𝑎𝑡)|𝑠0 = 𝑠, 𝑎0 = 𝑎

]

(1)

The objective of using RL methods is to find an optimal policy 𝜋 that
aximizes 𝑄𝜋 . For finite-state MDPs, Q-learning is the most prevalent
L method [21], which uses a Q-table to record the combinations of
state,action⟩. Subsequently, several RL methods incorporating artifi-
ial neural networks have been proposed to cope with the infinite state
pace.

Training algorithms can be categorized into model-based RL and
odel-free RL according to whether the environment model in RL is
re-defined or acquired through learning. Furthermore, these train-
ng algorithms can also be classified according to state-based, policy-
ased, or state-policy combination approaches. A more comprehensive
ccount of the research progress on RL can be found in [22].

The RL methods differ distinctly from the other classical classes of
L methods, namely supervised learning (SL) and unsupervised learn-

ng (UL), in several aspects. UL involves training a model using labeled
atasets to enable the algorithm to predict accurate output labels based
n input data. SL is primarily employed for regression and classification
asks. UL utilizes unlabeled data for model training to discover patterns,
tructures, or relationships within such data. Dimensionality reduction
nd clustering are representative UL techniques. As depicted in Table 1,
hese three types of methods exhibit significant differences across all
hree dimensions: data type used, feedback mechanism for the result,
nd target.

.2. Ensemble learning

Ensemble learning (EL) is a widely adopted approach in the field of
achine learning (ML). The fundamental concept behind EL methods

nvolves training multiple predictors, combining their outputs, and
ggregating them to make informed decisions as the final result of
n ensemble model. Compared to individual basic models, this EL
ethod effectively leverages the distinctive characteristics of diverse
odel types to enhance the predictive performance and achieve more

obust results. Prominent approaches in ensemble learning encompass
agging [23], boosting [24], and stacking [25]. Fig. 5 gives a schematic
iagram of these three types of EL methods, where 𝐷 denotes the
ataset, 𝐷1 to 𝐷𝑛 denote the sample selection from the dataset, 𝑀1
o 𝑀𝑛 denote the models employed, and 𝐹𝑅 denotes the final result.
he dotted line in Fig. 5-(b) indicates the dynamic nature of sample
eights across subsequent iterations of the dataset. The dotted line in
ig. 5-(c) indicates that all datasets are used for model prediction from
evel2 to level𝐿. The primary distinction among these three types of
ethods lies in the approach to sample selection. These original and

mproved EL methods have been extensively employed across diverse
omains, with the incorporation of domain knowledge in the improved
L method yielding exceptional performance outcomes. In summary,
he EL method has demonstrated its advantageous nature through three
ey aspects.
∙ Bias–variance Decomposition
The bias–variance decomposition has been widely employed to

emonstrate the effectiveness of ensemble learning (EL) methods over
ndividual learning methods. While bagging reduces variance among
ase learners, other EL methods aim to reduce both bias and variance.
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Fig. 2. A taxonomy of ERL according to agent cooperation and method deployment.
Table 1
Differences between ERL, SL, UL.

Dimension SL UL RL

Data type used Labeled Unlabeled Unlabeled
Feedback mechanism for results Direct feedback No feedback Multi-step post-implementation feedback
Target Reduce error Find the hidden relationship Search the strategy with long-term reward
Krogh and Vedelsby initially demonstrated the effectiveness of EL
for single data set problems by employing ambiguity decomposition
to reduce variance [10]. Subsequently, Brown et al. [26] and Ge-
man et al. [27] verified the effectiveness of EL methods for multiple
data set problems. The decomposition equation can be formulated as
follows [12]:

𝐸[𝑠 − 𝑡]2 = 𝑏𝑖𝑎𝑠2 + 1
𝑁

𝑣𝑎𝑟 + (1 − 1
𝑁

)𝑐𝑜𝑣𝑎𝑟 (2)

𝑏𝑖𝑎𝑠 = 1
𝑁

∑

𝑖
(𝐸[𝑠𝑖] − 𝑡) (3)

𝑣𝑎𝑟 = 1
𝑁

∑

𝑖
𝐸[𝑠𝑖 − 𝐸[𝑠𝑖]]2 (4)

𝑐𝑜𝑣𝑎𝑟 = 1
𝑁(𝑁 − 1)

∑

𝑖

∑

𝑗≠𝑖
𝐸[𝑠𝑖 − 𝐸[𝑠𝑖]][𝑠𝑗 − 𝐸[𝑠𝑗 ]] (5)

where 𝑖 denotes the 𝑖th model of EL, 𝑠 denotes a solution to the problem,
and 𝑁 denotes the number of models in EL. The bias and variance
are obtained using the average differences among multiple models,
while 𝑐𝑜𝑣𝑎𝑟 measures the pairwise difference between models in the
EL method.

The reduction in bias for an individual model is accompanied by an
increase in variance. However, the ensemble model can be used for pre-
diction purposes and effectively mitigate variance without increasing
bias.

∙ Statistical Perspective
The advantages of EL from a statistical perspective are supported by

the work conducted by Dietterich [13]. From a statistical point of view,
machine learning problems exist within a search space encompassing
multiple hypotheses. The target of the prediction model is to identify
the optimal hypothesis. However, due to limited training data size
relative to the expansive search space, there is an elevated risk of
erroneous inferences. The use of an EL method can effectively inte-
grate these hypotheses to enhance comprehension of the search space
characteristics and mitigate the likelihood of erroneous classification or
invalid prediction.
3

∙ Diversity Perspective
The advantages of EL from the diversity perspective are readily

comprehensible and easily graspable. Dietterich highlights that the
combination of different single models can enhance diversity [13].
Some typical EL methods, such as AdaBoost and random forest, show
the importance of diversity in terms of training data. And the use of
random noise can enhance the richness of the output. In other words,
diversity allows decision-makers to combine the model output with
usage requirements to obtain a more reasonable final result.

The integration of DL with EL, known as ensemble deep learning
(EDL), has gained significant popularity in recent years. EDL demon-
strates strong predictive capabilities by employing a model training
approach that combines deep artificial neural networks (ANNs) and
gradient descent [28,29]. A comprehensive overview of the latest ad-
vancements in EDL can be found in [29]. It is noteworthy that ERL
assesses the efficacy of model training based on environmental factors,
whereas EDL relies on real-world datasets, emphasizing the distinction
between ERL and EDL.

2.3. Ensemble reinforcement learning

Ensemble reinforcement learning is a new artificial intelligence
method that integrates reinforcement learning training methods into
the ensemble learning framework, replacing conventional model train-
ing methods with more sophisticated RL methods. The training process
of ERL involves a bidirectional exchange of data between the model
and the training method. Fig. 6 illustrates the data flow between
the ensemble model and reinforcement learning. The base learners
in the ensemble model generate predictive data based on the task
inputs, which interact with the environment and serve as the data
source for the RL training. Once RL meets the training criteria, it
consumes the data, leading to the generation of a new set of model
parameters that are subsequently used to update the model. With the
continuous generation and consumption of data, the ensemble model
can effectively identify an optimal combination of parameters that can
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Fig. 3. Structure of the survey.
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Fig. 4. Interaction process between agent and environment. The Agent’s performance
is updated on the state through environmental evaluation.

be suitably adapted to the environment. Then, the ERL method can
directly leverage the trained ensemble model to solve complex tasks.

The structure of the ERL method exhibits a higher level of com-
plexity compared to that of single EL or RL methods, thereby provid-
ing greater potential for enhancing method performance from various
perspectives. In the next section, we will describe the improvement
strategies in the ERL method in detail.

3. Strategies for ensemble reinforcement learning

Previous studies have shown that the ERL method demonstrates
superior average performance and sampling efficiency compared to
RL methods, as evidenced by results obtained from public RL test
sets and practical tasks [15,30]. By using ERL, the performance im-
provement can reach up to 20% [31–33]. Moreover, for classification
tasks, the ERL method achieves the best accuracy scores across multiple
benchmarks in the UCI online data repository [34,35].

The strategies employed by ERL to outperform other solution meth-
ods in various problems are closely interconnected. These strategies
are categorized based on the diverse improvements made to the ERL.
The ensemble strategies for ERL encompass Q-function, reward, and
loss function ensembles, as well as model combinations, combination
training algorithms, and decision strategies. In this section, we will
introduce these strategies individually.

3.1. Ensemble strategies for Q-functions

In most RL methods, the Q-function reflects how good the agent
is in any given state [20]. A ‘‘good state’’ refers to a state that can
achieve a high expected return, which is contingent upon the action
taken by the agent. The background section provides the Q-function
formula, which is applicable to ERL methods. Additionally, tailor-
ing Q-functions specifically for ERL methods can further enhance the
algorithm performance [15,36–38].

A Max–min Q-learning algorithm using multiple Q-functions was
proposed by Lan et al. [39] to evaluate the performance. The max–
min mechanism integrates multiple predicted values as a reference for
agent decision-making. Specifically, the prediction term in the original
Q-value calculation formula is determined by selecting the smallest
value among multiple Q functions. The efficacy of this algorithm is
demonstrated using the Mountain Car environment. It can be observed
from the results that enhancing the Q-function positively impacts both
the convergence performance and search efficiency of the algorithm.

The Q-function can also be enhanced through the utilization of
Bayesian optimization. Chen et al. incorporated this concept into the
design of the ERL method to update 𝑄∗ using Bayesian optimization,
which proves particularly effective in addressing high-dimensional ERL
problems and especially valuable when dealing with ultra-large so-
lution spaces [8]. In this study, an upper-confidence bounds (UCB)
based strategy for exploring the solution space is employed for action
selection by the agent. The proposed method’s performance is evaluated
using Atari games in the experimental section, and the results validate
its effectiveness.
5

The ERL methods can leverage certain Q-value approximation tech-
niques employed in RL research. Ghosh et al. proposed an ERL ap-
proach based on a multi-agent framework to address the air traf-
fic control problem [40]. To expedite convergence, they utilized a
kernel-based Q-value approximation method that utilizes sample tran-
sitions [41].

The main targets of Q-function improvements can be summarized
as follows: maintaining diversity [15,37], enhancing algorithmic explo-
ration performance [8], and reducing bias (e.g., underestimation bias)
or coping with the effects of overestimation [39]. This improvement
strategy can be regarded as a key optimization after the integration of
multiple single models, which allows the components to be integrated
as a whole. This improvement strategy is more thorough and easier to
get high-quality results than some other improvement strategies.

3.2. Ensemble strategies for reward

The reward is a reflection of the agent’s performance in taking ac-
tions based on the state. Generally, a high reward corresponds to a good
decision, while a problematic decision prompts the agent to identify
and rectify errors through the reward mechanism. Building upon this
concept, Yao et al. proposed an averaging reward calculation method
for the ERL method, enabling it to effectively balance exploration and
exploitation [42]. Subsequently, an ANN model is trained using the
soft actor–critic method. This ERL approach proves highly suitable for
addressing challenges associated with exploring uncharted regions.

The combination of reward functions in ERL can also be utilized
with weight aggregation. Lin et al. proposed an adaptive adjustment
method for the weights of reward functions by combining Upper Con-
fidence Bounds (UCB) and error [43]. This weight update strategy
enables the ERL method to assess the accuracy of previous policies
and enhance generalizability. Qi et al. also employed an ERL method
with aggregated weighted reward functions to address the traffic signal
control problem [44].

Although the traditional calculation method of reward is widely
used, it has the shortcomings of a complex process. Compared to tradi-
tional methods, fuzzy-based methods can reduce computational costs. A
fuzzy set can affect the reward value obtained by agents by measuring
dissimilarity. Pan et al. proposed a dissimilarity evaluation metric for
deciding the weight value of each agent’s reward in ERL [45]. In this
way, ERL can achieve a good training effect with fewer iterations.

Strategies for improving reward can modify the agent’s action evalu-
ation mechanism, thereby impacting both the state and adopted strate-
gies. While most existing research focuses on processing feedback base
learners in the environment and aggregating it to reward, limited
studies specifically address comprehensive evaluation of differentiated
performance among various base learners in ERL [42,45]. Furthermore,
designing novel methods for calculating rewards in ERL is also an
improvement idea.

3.3. Ensemble strategies for loss function

The loss function serves as a fundamental foundation for ERL to
update network parameters and enhance the performance of agent
decisions. A smaller loss value indicates a closer proximity between
the predicted value of the ERL model and the actual value. However,
during RL model training, two critical issues often arise: gradient
explosion and gradient disappearance. Several studies in ERL have
endeavored to refine the accuracy of RL model decisions by enhancing
the loss function [15,46–48]. Kumar et al. conducted theoretical analy-
sis on bootstrapping error and proposed an approach to reduce error
accumulation, thereby augmenting stability in ensemble Q-learning
algorithms [7].

Designing a global loss function for all models used is another
approach specific to ERL. Adebola et al. proposed an improved global
loss function with each member model included in the function [49].
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Fig. 5. Schematic diagram of three types of EL methods. (a) shows bagging. (b) shows boosting. (c) shows stacking.
Fig. 6. Data flow in ERL method. The information interaction will be continuous
between RL and EL.

Moreover, an interpolation method is used to control the difference
between policies that the algorithm needs to train. This ERL method can
also optimize the agent’s policy selection using fine-tuning techniques.
Based on this idea, Jiang et al. added the training data error between
6

models to the overall loss calculation formula for improving prediction
accuracy [19]. It can be seen from the experiment that this method
is applicable in mobile edge computing (MEC) systems for rational
resource scheduling.

In addition, incorporating uncertainty into the analysis is an ef-
fective approach to enhance the loss function. Sun et al. employed
the technique of uncertainty reduction to devise an ensemble loss
function [50], which effectively mitigates the risk of the RL model
getting trapped in a local optimum. Within this study, a distillation
method is utilized for selecting training for the model. Subsequently,
the performance of the proposed ERL method is validated through Atari
game experiments.

The improvement of the loss function can make the model pre-
diction of ERL closer to the real situation [20]. However, due to the
existence of bias and variance, it is not guaranteed that a high-precision
model must guarantee excellent performance in processing tasks. This
is particularly true for complex sequential decision problems where
environmental changes significantly impact the agent’s performance.
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Table 2
Combination of models.

Year Author Combination of models

2019 Dong et al. [51] Long short-term memory (LSTM) network, gated recurrent unit network
2019 Goyal et al. [48] Convolution neural network (CNN), gated recursive unit
2020 Liu et al. [61] LSTM network, deep belief network, echo state network
2020 Perepu et al. [52] Linear regression model, LSTM model, ANN, random forest
2021 Liu et al. [54] Graph convolutional network, LSTM networks, gated recursive unit
2021 Saadallah et al. [57] Autoregressive integrated moving average, exponential smoothing, gradient boosting machines, gaussian processes,

support vector regression, random forest, projection pursuit regression, MARS, principal component regression, decision
tree regression, partial least squares regression, multilayer perceptron, LSTM network, Bi-LSTM: Bidirectional LSTM,
CNN-based LSTM, convolutional LSTM

2021 Daniel L. Elliott and Charles Anderson [55] CNN, gated recursive unit, ANN
2022 Shang et al. [32] Gated recursive unit, graph convolutional network, graph attention network
2022 Tan et al. [33] Graph attention network, long short-term memory networks, temporal convolutional network
2022 Li et al. [62] Gated recurrent unit, deep belief network, temporal convolutional network
2022 Zijie Cao and Hui Liu [56] Temporal convolutional network, Bidirectional long short-term memory network, kernel extreme learning machine
2022 Birman et al. [63] Machine learning models, ANN
2022 Li et al. [58] Naive Bayes, support vector machine with stochastic gradient descent, FastText, Bi-directional LSTM
2022 Sharma et al. [59] Support vector regressor (SVR), eXtreme gradient boosting (XGBoost), Random Forest (RF), ANN, LSTM, CNN,

CNN-LSTM, CNN-XGB, CNN-SVR, and CNN-RF
2022 Shi Yin and Hui Liu [64] Group method of data handling, echo state network, extreme learning machine
2023 Yu et al. [31] Graph attention network, gated recursive unit, temporal convolutional network
Therefore, designing a robust loss function that ensures stable per-
formance across various scenarios becomes crucial when considering
further advancements in improving the ERL method.

3.4. Combination of models

The ensemble of different types of models is a common and simple
strategy in ERL. The combination of models can achieve structural di-
versity. These models can be either ML models or ANN models [51,52].
The structure of the model combination is determined according to the
specific problem and the solution target. A single type or a combination
of multiple types of models are both popular. For using only one type
of model, ANNs with different depths can be considered. While other
studies use different random initialization strategies [16] or ANN in
different training stages [53]. Table 2 provides a summary of related
work ensemble model combination strategies. There are three models
mainly in relevant works, including ML models only, ANN models only,
and ML&ANN models hybrid.

The model selection process typically involves choosing from a
range of classical or recently proposed methods that are specifically
designed for addressing this type of task. For instance, when it comes
to prediction tasks, most researchers will choose convolutional neural
networks, gated recursive units, artificial neural networks (ANN), and
other SOTA approaches in this domain [52,54,55]. Apart from deter-
mining the potential composition of ERL, it is also crucial to determine
the number of base learners. In most studies, two or three single
models are commonly employed. Besides, there exist some studies
where more than three models have been integrated within the ERL
framework [56]. Saadallah et al. [57], Li et al. [58], and Sharma
et al. [59] are some examples in this regard. These studies have
extensively demonstrated that employing a combination of strategies in
ERL outperforms baseline methods as well as state-of-the-art ensemble
learning techniques [33,60].

ERL can be divided into parallel ERL and sequential ERL according
to the relationship between base learners in ERL. Figs. 7 and 8 give
schematic diagrams of these two ERL methods. In most ERL studies,
such as Liu et al. [35], Schubert et al. [65], and Shen et al. [66], base
learners are constructed in a parallel framework. These ML or ANN
models are responsible for the same task. After each model processing,
the final prediction result will be generated by a certain strategy. There
are also some studies, such as Qin et al. and Ferreira et al. that try to
construct the ERL method in the sequential framework [67,68]. In this
framework, the base learner completes the final prediction step by step
7

in a certain order [68].
Model combination is a readily implementable strategy for enhanc-
ing ERL performance. By integrating multiple classical or advanced
models, the diversity of ERL methods can be maintained while leverag-
ing the strengths of each model [55,59]. However, it does not necessar-
ily follow that increasing the number and variety of models in ERL will
always lead to improved performance [69]. The single models and the
design of decision mechanisms significantly impact final outputs. More-
over, due to the numerous parameters involved, training these models
requires substantial data and time. Therefore, achieving a balance
between the number of models employed, performance enhancement,
and training costs becomes a key consideration when adopting the
model combination strategy.

3.5. Combination of training algorithms

Ensemble Reinforcement Learning (ERL) can not only use model
combinations to obtain diverse prediction results but can also use
different training algorithms to achieve full exploration of the solution
space. Parameter diversity can be achieved by using multiple training
algorithms to get the respective parameters of base learner. Training
algorithms can be classified into three categories: state-based, policy-
based, and state-policy combination-based. Each of these training algo-
rithms has its unique sampling strategy and output data characteristics.
Researchers can quickly use the training algorithms according to the
application scenarios without focusing on data sampling technology,
which is similar to the EL method [70,74]. Table 3 provides information
about studies using the combination strategy of training algorithms.
There exists a new method of combining online and offline training
algorithms or using training algorithms based on different optimization
strategies, which can take advantage of their respective strengths to
handle complex tasks. Accordingly, the complexity of ERL methods
using such improved strategies increases. For this reason, the training
process of the ERL method takes more time. Moreover, the ensemble
model obtained also requires the design of a decision strategy to select
the prediction results that are closest to the actual situation.

Currently, the research related to the combination of training al-
gorithms is not deep enough and simply combines multiple typical
algorithms. The combination of training algorithms in the ERL, similar
to the model combination strategy, increases parameters (primarily
hyperparameters). However, intricate combinations of training algo-
rithms can result in significant time investment for implementation
and debugging [75]. Moreover, excessive hyperparameters may lead
to models lacking robustness across different environments [76]. It is
worth noting that there are some similarities between training algo-

rithms. Transfer learning can be considered to transfer sampled data
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Fig. 7. Parallel ensemble reinforcement learning. The respective results of base learners are processed by the decision strategy to get the final output.
Fig. 8. Sequential ensemble reinforcement learning. The output of the previous base learner will be used as the input of the following base learner.
Table 3
Combination of training algorithms.

Year Author Combination of training algorithms

2008 Marco A. Wiering and Hado van Hasselt [70] Q-learning, Sarsa, actor–critic, QV-learning, ACLA
2018 Chen et al. [71] Deep Q-networks, deep Sarsa networks, double deep Q-networks
2020 Yang et al. [14] Proximal policy optimization, advantage actor–critic, deep deterministic policy gradient
2020 Saphal et al. [72] Advantage actor–critic, sample efficient actor–critic with experience replay, actor–critic using

Kronecker-factored trust region, deep deterministic policy gradient, soft actor–critic, trust region policy
optimization

2021 Smit et al. [30] Double deep Q-Learning, soft actor–critic
2022 Eriksson et al. [73] Residual gradient, TD, TD(𝜆)
2022 Németh, Marcell and Szűcs, Gábor [74] Deep deterministic policy gradient, advantage actor–critic, proximal policy optimization
to reduce the training time. In addition, the termination conditions
of multiple training algorithms also deserve in-depth analysis. Using
the same number of iterations may result in some models finding the
best policy long ago, while some models still need further training.
Therefore, more research is required to investigate the combination of
training algorithms in ERL.

3.6. Decision strategies

The ERL algorithm employs multiple base learners to generate indi-
vidual results which may introduce variations among the outputs. Con-
sequently, specific decision strategies are necessary for the ERL model
and output. Commonly adopted decision strategies in existing relevant
research encompass voting, optimal combination, binning, aggregation,
weighted aggregation, stacking, and Boltzmann multiplication (refer to
Fig. 9).

Voting: Voting, as a common ERL decision strategy, records the
number of occurrences of each prediction at first [77]. Then, the final
prediction can be selected from the results according to the principle
of majority or ranking.

Optimal Combination: For classification problems, this is a com-
monly used decision strategy [78]. Multiple base classifiers are trained
separately, from which the optimal subset of models is selected to form
an ensemble to classify the test set.

Binning: Binning is a majority voting decision strategy with con-
tinuous action space [72]. First, the action space is discretized into
multiple intervals. Then, the number of occurrences of the actions in
each interval is recorded. Finally, the average value of the action within
the interval with the highest number of occurrences is selected as the
final prediction result.

Aggregation: The prediction results of all the models in ERL are
summed to produce an overall evaluation value, which is taken as the
8

Fig. 9. Decision strategies. Decision strategies mainly include: voting, optimal
combination, binning, aggregation, weighted aggregation, stacking, and Boltzmann
multiplication.
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final result [58]. In the aggregation method, each model is considered
to be equally reliable.

Weighted Aggregation: The prediction results obtained from differ-
ent models are summed according to their weights [52]. A high value
of weight is used for aggregation models with high prediction accuracy.

Stacking: First, an additional machine learning model is involved
to further predict the results of base learners. Then, the output of this
machine learning model is used as the final prediction result [63].

Boltzmann Multiplication: Boltzmann distribution is the basis for
decision making [70]. The probability value of each action can be
calculated according to the Boltzmann distribution. The outcome with
the highest probability value is selected and will not be changed.

In summary, the selection of decision strategies in ERL depends
on the specific application scenario and the characteristics of the base
learners. At present, there is no related study on the in-depth analysis
of the application scenarios of these strategies. The study in this area
will be helpful to improve the prediction accuracy of ERL methods. It
will also promote the process of ERL research.

3.7. Discussions

In recent years, a variety of improvement strategies have emerged
to enhance the performance of ERL. These include adjusting the Q-
function, reward, and loss function in RL, designing model combina-
tions, training algorithm combinations, and decision-making mecha-
nisms. These strategies have improved ERL’s ability to solve complex
tasks from various aspects and promoted its application in different
fields. However, the rapid development of this method has exposed
a deficiency in insufficiently in-depth theoretical analysis of ERL im-
provement strategies. Most studies only focus on improving ERL from
an application perspective without analyzing the motivation for adopt-
ing these strategies. This situation may lead to numerous similar works
that do not advance the field well. Therefore, we aim to discuss two
important issues here with hopes of drawing attention from other
researchers.

The first problem is how to select strategies to improve the ERL.
Irrespective of the method employed for strategy selection, the objec-
tive remains consistent - improving ERL performance for task-solving
purposes. These strategies vary significantly in terms of the effort
required to adapt the approach due to varying levels of ERL modi-
fications involved. For instance, proposing a new Q-function or loss
function necessitates substantial knowledge and experience in RL and
ERL methods. This strategy design approach demands considerable
time and effort from researchers. However, it offers an opportunity to
apply the newly proposed ERL across a range of problem scenarios or
tasks, thereby driving research development forward. Many researchers
facing challenges when directly designing new mechanisms for RL find
it easier to combine or enhance existing techniques while applying
them to novel problems. Although they may encounter difficulties when
attempting to direct in other areas, this type of research effectively
addresses their specific interests. There is an urgent need for system-
atic analysis of how different strategies impact ERL improvement and
obtain applicable improvement strategies across various scenarios or
problems. Such systematic analysis will foster rapid development and
widespread implementation of ERL within diverse fields. Additionally,
analyzing the effects of multiple strategy combinations is essential in
order to fully realize the potential of ERL.

Another question to consider is whether more complex structures
are superior. Not only the ERL field but also other ML fields exhibit
a trend towards increasingly intricate models and algorithms. While
complex structures can indeed enhance method performance, they
inevitably lead to greater computational resource consumption [37].
Additionally, the complexity of modeling structures may result in nu-
merous hyperparameters requiring researchers to train effective mod-
els. Furthermore, these models may experience high volatility in perfor-
mance when applied to different scenarios [76]. Therefore, it is crucial
9

Fig. 10. The summary of the different application areas of ERL. The area where ERL
is most applied is energy and environment.

to design a sound strategy that achieves desired goals by analyzing
the impact of increasing model numbers and types integrated into ERL
method performance enhancement. Researchers should focus more on
ERL strategy design if an appropriate number of models are available.

4. Applications of ensemble reinforcement learning

A significant portion of existing research on ERL primarily focuses
on discrete/continuous control actions [43,79–81] and game envi-
ronments [82–84] to verify the effectiveness of proposed algorithms.
Additionally, researchers attempted to utilize ERL methods to solve in
practical domains. Fig. 10 provides an overview of the key application
areas encompassing energy and environment, IoT and cloud computing,
finance, and other sectors where ERL has been extensively explored.
Among these domains, energy and environment emerge as the most ex-
tensively investigated area for applying ERL techniques. In this section,
we discuss the application of ERL in various domains.

4.1. Energy and environment area

As the global economy continues to expand, energy and envi-
ronmental issues have gained increasing attention worldwide. The
utilization of neural network methods for predicting future conditions
based on historical data has become the policy formulation. In this
type of prediction problem, there exists a spatiotemporal relationship
between data, which makes the recurrent neural network (RNN) the
preferred choice. In these related studies, ensemble RNN models (ERL)
are employed to obtain. Table 4 presents recent applications of ERL
in the field of energy and environment. It is evident that wind power
and PM 2.5 prediction are prominent research topics. From a statistical
perspective, sixty-four percent of ERL-based studies utilized Q-learning
as the training algorithm, while the remaining studies employed Sarsa,
deep Q-network, and deep deterministic policy gradient algorithms.
Overall, ERL methods in the energy and environment domain primarily
focus on ensemble models where reinforcement learning algorithms
are predominantly used directly. Compared with traditional approaches
employing ML or ANN prediction methods [85,86], there exists a
significant gap between their respective prediction results and those
obtained by ERL.

The most commonly employed improvement strategy in related
studies, such as [31,60,64], involves the combination of multiple mod-
els and decision strategy design. By combining models with different
structures, ERL enables diverse decision-making and achieves structural
diversity. For instance, [33] integrates three distinct classes of spatio-
temporal ANNs, graph attention network (GAT), LSTM networks, and
temporal convolutional network (TCN), simultaneously for prediction.
These ANNs employ different processing logics, effectively ensuring
distinguishable output results.
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Table 4
Application in energy and environment area.

Year Authors Problem Training algorithm

2020 Liu et al. [61] Wind speed short term forecasting Q-learning
2021 Jalali et al. [87] Solar irradiance forecasting Q-learning
2021 Liu et al. [54] PM2.5 forecasting Q-learning
2021 Li et al. [88] PM2.5 forecasting Q-learning
2021 Chao Chen and Hui Liu [89] Wind speed prediction Deep Q-network
2021 Jalali et al. [60] Wind power forecasting Q-learning
2022 Tan et al. [33] PM2.5 prediction Sarsa
2022 Qin et al. [90] Unit commitment problem Deep Q-network
2022 Sogabe et al. [91] Smart energy optimization and risk evaluation Q-learning
2022 Sharma et al. [59] Estimating reference evapotranspiration Q-learning
2022 He et al. [92] Wind farm control Deep deterministic policy gradient
2022 Jalali et al. [93] Solar irradiance forecasting Q-learning
2022 Shi Yin and Hui Liu [64] Wind power prediction Q-learning
2023 Yu et al. [31] Wind power prediction Deep deterministic policy gradient
Table 5
Application in IoT and cloud computing area.

Year Authors Problem Training algorithm

2020 Ashiquzzaman et al. [97] IoT sensor calibration Deep Q-network
2021 Polyzos et al. [95] Resource allocation Sarsa
2021 Jiang et al. [19] Large-scale MEC systems Deep Q-network
2021 Gu et al. [94] Online cloud task scheduler Deep deterministic policy gradient
2021 Liu et al. [98] Deep reinforcement learning training on GPU cloud platform Actor–critic network
2022 Mahmud et al. [99] Non orthogonal multiple access unmanned aerial network Deep Q-network
The application of ERL in the field of energy and environment
rimarily involves forecasting tasks, for which evaluation metrics used
n traditional forecasting tasks are employed. To ensure an accurate
ssessment of the predictive performance of this method, mean abso-
ute error (MAE), mean absolute percentage error (MAPE), and root-
ean-square error (RMSE), are utilized [54]. In addition, the standard
eviation of error (SDE) is also a common metric for evaluating ERL
ethods [88].

.2. Internet of Things and cloud computing area

In the area of the Internet of Things (IoT) and cloud computing, ERL
s widely used to optimize system performance and business processing
apabilities. The IoT connects various devices such as sensors, smart
erminals, and industrial systems to form a globally interconnected
ystem. Optimizing the efficiency of these devices and facilities has a
ositive impact on improving the overall performance of IoT systems.
loud computing is another technology closely related to the IoT. Users
an access computing resources or services in this distributed system
rovided by a cloud platform over the network on demand. Resource
llocation and optimization have been the focus of research in the
oT and cloud computing area. Table 5 presents the applications of
RL methods in this area. Among these related works, the diversity
f ERL in [94] is primarily ensured by the different inputs obtained
hrough the utilization of the k-means method. This approach achieves
ata diversity. Other studies, such as [19,95], have made advancements
owards enhancing the composition of RL. Here, most studies use the
ffline algorithm, except for Polyzos et al. [95], who used an online
lgorithm. The performance of the ERL method has been verified on
imulation platforms [96]. It can be seen from experimental results
hat the use of ensemble models makes the ERL method schedule
ignificantly better than compared RL methods. When applying ERL
n this area, matching the application requirements of multi-agent and
istributed architecture becomes a core point. This system architecture
llows the ensemble models in ERL to handle the same or different
asks.

For the domains of IoT and cloud computing, the evaluation metrics
xhibit some variations. The performance of the ERL method for IoT
ensor calibration in [97] is based on accuracy. Unlike [95,97] exam-
nes the proposed method’s effectiveness by analyzing the total cost
f IoT resource allocation. In terms of the cloud computing domain,
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orkload serves as a crucial evaluation metric [94].
4.3. Financial area

In the financial area, complex decision-making problems, such as
pricing financial products and portfolio optimization, are being tried
to be solved by ERL methods. Though single models can make pre-
dictions on a specific problem, their generalization is affected by the
problem scenario. Compared with the single model, ensemble models
are affected less by the problem scenario factors. Table 6 presents the
applications of ERL methods in finance. In these studies, 67% used
only one training algorithm, while the rest of the studies used multiple
training algorithms in an ERL method. Three algorithms, namely proxi-
mal policy optimization, advantage actor–critic, and deep deterministic
policy gradient, have shown good performance in training.

The utilization of multiple training algorithms constitutes a fun-
damental strategy employed by ERL to uphold diversity in financial
domains [14,74]. Specifically, the base learner is trained to obtain
different parameter configurations for parameter diversity. The primary
objective of ERL is prediction, whereby cumulative return, annualized
return, annualized volatility, Sharpe ratio, and max drawdown emerge
as five commonly adopted metrics for stock trading evaluation [14].
As a forecasting task within the domain of energy environment stud-
ies, MAE, MAPE, and SDE can also be employed to evaluate method
performance [62]. Additionally, Theil U statistic 1 (U1) can be utilized
as an evaluative metric [56].

4.4. Other areas

Apart from the previous three traditional application domains, ERL
has also been successfully applied in various other fields such as
transportation, medicine, and security, which will be discussed in detail
within this section. Table 7 provides a comprehensive overview of these
ERL methods primarily focus on prediction tasks while only a limited
number of classification problems like diagnosis and recognition are
addressed using ensemble techniques. Notably, the work conducted by
Eriksson et al. [73], who employed ERL methods to tackle autonomous
driving challenges, deserves special attention. If the ERL can be ef-
fectively implemented for small-scale autonomous driving assistance
systems, it is highly likely to stimulate new research endeavors and
practical applications in this domain.

In the future, we expect to see more areas using ERL methods for

complex tasks. Existing research results can provide valuable references
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Table 6
Application in financial area.

Year Authors Problem Training algorithm

2020 Yang et al. [14] Stock trading Proximal policy optimization, advantage actor–critic, deep deterministic policy gradient
2020 Xu et al. [100] Fuel economy improvement Q-learning
2021 Carta et al. [53] Stock market forecasting Deep Q-network
2022 Li et al. [62] Regional GDP prediction Deep Q-network
2022 Zijie Cao and Hui Liu [56] Carbon price forecasting Q-learning
2022 Németh, Marcell and Szűcs, Gábor [74] Algorithmic trading Proximal policy optimization, advantage actor–critic, deep deterministic policy gradient
Table 7
Application in other areas.

Year Authors Problem Area

2021 Ghosh et al. [40] Air traffic control Traffic
2021 Dong et al. [51] Traffic speed forecasting Traffic
2022 Shang et al. [32] Traffic volume forecasting Traffic
2022 Qi et al. [44] Traffic signal control Traffic
2022 Eriksson et al. [73] Autonomous driving Traffic
2016 Tang et al. [101] Symptom checker Medicine
2021 Jalali et al. [78] COVID-19 diagnosis Medicine
2022 Birman et al. [63] Malware detection Security
2022 Li et al. [58] Rumor tracking Security
2023 Henna et al. [102] FSO/RF communication systems Optics
2019 Cuayáhuitl et al. [103] Chatbots Dialogue system
2010 Alexander Hans and Steffen Udluft [36] Pole balancing Engineering control
2018 Ferreira et al. [68] Cognitive satellite communication Aerospace
for subsequent research, including improving existing algorithms to
overcome their limitations, or extending the problem domain to obtain
new insights. In the next section, we discuss some potential directions
for future research on ERL methods.

5. Datasets and compared methods

This section examines the datasets and comparison methods used
in various studies related to ensemble reinforcement learning (ERL).
As presented in Table 8, experiments are conducted to evaluate the
performance of the proposed ERL methods. The datasets used in these
experiments mainly include real-world data and publicly available
datasets or environments. Real-world data are useful for objectively
testing the predictive or classification performance of the method for
specific applications. For instance, studies in the field of energy and
environment have gathered data from multiple cities to predict de-
sired outcomes [31,61]. In contrast, publicly available datasets or
environments such as the OpenAI Gym environment in the field of
reinforcement learning are widely used to test the predictive perfor-
mance of algorithms for continuous/discrete actions [104]. The UCI
machine learning repository is widely recognized as the predominant
public dataset for classification problems in academic research [35].
Furthermore, some medical-specific datasets are also utilized in studies
of disease diagnosis [78].

To assess the efficacy of the proposed ERL methods, various com-
parative approaches have been employed in existing literature. Among
these, the single model-based RL method (SM-RL) is one of the simplest
ways to reflect the effectiveness of the proposed ERL method [65]. The
training algorithm used in SM-RL remains consistent with that of the
ERL method. However, this compared method has limited convincing
power. Consequently, some other studies have used other training
algorithms to compare with the proposed algorithm from another per-
spective [15,40]. In order to comprehensively evaluate the effectiveness
of algorithms, it is necessary to separately assess different models,
training algorithms, and integration methods [61].

The comparison methods are continuously evolving through ongo-
ing research. In other words, existing ERLs proposed in the relevant
literature serve as baselines or state-of-the-art (SOTAs) for comparison
when introducing a new ERL method. However, reproducing the exact
method described in the literature may pose challenges due to various
11

influencing factors such as the environment and algorithm parameters.
Fig. 11. Open questions. These three open questions are important and worthy of
in-depth study for the development of ERL.

To address this issue, many journals or conferences now require disclo-
sure of datasets, pseudo-code, code, model structure, hyper-parameter
configuration, data partitions, tuning methods and statistical tests as
basic requirements. Studies like [34,85,109] have provided detailed
information on their models and training methods which greatly assist
other researchers who consider them as SOTA methods. Neverthe-
less, some studies still lack certain details (e.g., random seeds and
training strategies), resulting in reproduced results that fall short of
expectations. This discrepancy arises from the fact that ERL is a class
of improved RL methods where models can vary depending on the
environment.

6. Open questions and future research directions

6.1. Open questions

In this section, we summarize three open questions in ERL-based
research that can contribute to the future development of ERL (see
Fig. 11).

6.1.1. Which models to choose?
Models serve as the foundation for constructing ERL methods and

exert a direct influence on the ultimate outcome. The utmost crucial as-
pect of model selection lies in its capability to perform feature selection
and learning effectively. If a model cannot acquire valid information,
it becomes devoid of meaning. Compared to single-model methods,
ensemble methods employing multiple identical or diverse models can
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Table 8
Datasets and compared methods.

Year Authors Dataset Compared methods

2016 Osband et al. [105] Atari games DQN
2017 Chen et al. [8] Atari games A3C+
2017 Partalas et al. [106] UCI machine learning repository Classifier combination methods voting (V) and SMT and the forward selection (FS),

selective fusion (SF)
2018 Pearce et al. [107] Cart Pole control problem Q-learning with different layer NNs
2019 Dong et al. [51] Traffic speed dataset GRU, LSTM, MLP, RBF, LSTM-GRU-GA
2019 Pan et al. [45] Maze, Mountain Car, Robotic Soccer Game

Simulation
Counterpart

2019 Goyal et al. [48] CATS (Competition on Artificial Time series)
dataset

LSTM, ANN, Linear regression, Random Forest, Online NN

2019 Macheng Shen and
Jonathan P How [108]

Two-player asymmetric game Single model, RNN

2020 Qingfeng Lan et al.
[39]

Mountain Car Q-learning, Double Q-learning, Averaged Q-learning

2020 Liu et al. [61] Three different groups of measured wind speed
data from Xinjiang wind farms

Network: LSTM method, the DBN method, the ESN method; Training algorithm:
SARSA

2020 Lin et al. [43] Maze, soccer robot game Orthogonal projection inverse reinforcement learning method (OP-IRL)
2020 Junta Wu and Huiyun

Li [79]
2D Robot Arm Open Racing Car Simulator
(TORCS)

DDPG

2020 Yang et al. [14] Dow Jones 30 constituent stocks (at 01/01/2016) PPO, A2C, DDPG
2020 Liu et al. [35] UCI online data repository Classifiers combination approaches majority voting (MV), weighted voting (WV),

ensemble selection methods forward selection (FS)
2021 Ghosh et al. [40] Open-source air traffic simulator PPO

2021 Jalali et al. [87] GHI data sets Adaptive hybrid model (AHM), hybrid feature selection method (HFS), Outlier-robust
hybrid model (ORHM), novel hybrid deep neural network model (NHDNNM),
OHS-LSTM

2021 Liu et al. [54] Data collected from a congested intersection in
Changsha

RNN, ENN, ESN, DBN, RBF, GRNN, MLP

2021 Jalali et al. [78] Two well-known open-source image datasets
named Mendely and Kaggle

The original version of GSK and eight powerful evolutionary algorithms including
grasshopper optimization algorithm (GOA), Slime mold algorithm (SMA), genetic
algorithm, gray wolf optimizer (GWO), particle swarm optimization (PSO),
differential evolution (DE), biogeography-based optimization (BBO)

2022 Hassam Ullah Sheikh
et al. [15]

Mujoco environments, Atari games TD3, SAC and REDQ

2022 Shang et al. [32] Actual traffic volume data of nine stations of
Changsha freeway

Chebnet, CNN, LSTM, DBN, RNN, ESN, multi-layer perceptron (MLP)

2022 Tan et al. [33] Actual data RNN, the deep belief network (DBN), the echo state network (ESN), the error
encoding network (ENN), General Regression Neural Network (GRNN), radial basis
function network (RBF), multilayer perceptron (MLP)

2022 Li et al. [62] Three sets of data from three Provinces of China ESN, ENN, RNN, BPNN, ELM, RBF
2022 Cao et al. [56] The data for the three carbon trading markets

come from the Hubei Carbon Trading Network,
Beijing Carbon Emissions Electronic Trading
Platform, and International Carbon Action
Partnership (ICAP)

Network: TCN, BiLSTM, KELM, BPNN, MLP, echo state network (ESN), Elman neural
network (ENN), and gradient boosting decision tree (GBDT); Training algorithm:
SARSA

2022 Qin et al. [90] Historical load data of the California Independent
System Operator (CASIO) from January 1, 2021 to
July 5, 2021

PPO guided tree search, the MIQP algorithm with Gurobi 9.1

2022 Sogabe et al. [91] Optimal energy management in a residential
building microgrid

Mixed-integer linear programming (MILP)

2022 Birman et al. [63] A range of real-world scenarios Aggregation method

2022 Li et al. [58] PHEME, RumorEval Naive Bayes, SVM-SGD, Dense, BiLSTM, FastText, TextCNN, VRoC, some
combinations of the above methods

2022 Sharma et al. [59] Two MEC servers and 30 IoTDs randomly
distributed in the squared area with size
50 m × 50 m

Actor–Critic, DDPG

2022 Schubert et al. [65] SymCat’s symptom–disease database Single model-based RL
2023 Yu et al. [31] Actual wind power data of nine wind turbines GMDH, DBN, ESN, ENN, the extreme learning machine (ELM), the radial basis

function (RBF), multi-layer perceptron
mitigate the risk of erroneous inference and enhance overall predictive
performance. Consequently, it is imperative that the implemented mod-
els contribute significantly to the overall predictive performance of the
ERL method.

The models implemented in ERL mainly include ML and ANN mod-
els, characterized by their simplistic structure and robust generalization
capabilities, rendering them suitable for various practical applications.
However, when confronted with large-scale data and numerous fea-
tures, ML models may encounter challenges. In such scenarios, the ANN
model excels at extracting features from datasets and generating pre-
dictions that closely align with actual values. Nevertheless, it is worth
noting that certain tasks requiring comprehension pose difficulties for
12
ANN models. To address this limitation, some studies such as [57],
and [63] have explored the integration of both ML and ANN models
within ERL methods.

Simultaneously utilizing models at different training stages greatly
facilitates the design of ERL [53], as these models exhibit variations in
parameters and distinct predicted bias and variance. When employing
such an ensemble model, it is worthwhile to thoroughly investigate the
conditions under which each ensemble element is preserved during the
training process.

To automate the optimization of model structures, some studies
have employed proposed ensemble pruning methods such as forward
selection (FS) [110] and selective fusion (SF) [111]. These studies
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utilize a model library for selecting models, thereby reducing human
effort in the selection process. The model library can also be contin-
uously extended based on the latest research to optimize the overall
performance of the ERL.

6.1.2. Which training algorithms to use?
Model training poses a well-known challenge in the ERL method.

For model-free based ERL, the agent updates model parameters based
on state transfer or trajectory after a certain number of iterations.
However, there is no guarantee that all sampled data are useful. The
classic strategy is to use experience delay technology, which can im-
prove the sampling efficiency. While Schaul et al. [112] found that
the sampling inefficiency problem occurs when the sample in the relay
buffer is useless. Selected experience relay makes the algorithm training
more efficient by selectively choosing the adopted data into the replay
buffer [113]. It is worth noting that the experience relay buffer is
only applicable to the off-policy RL method. Besides, model-based RL
methods can guarantee sampling efficiency by learning environment
models. However, such a training algorithm has to face a huge action
space. In this case, approximating the environment model becomes an
extremely difficult task.

Good training algorithms should balance exploration and exploita-
tion, as relying solely on one approach proves challenging. Therefore,
the future direction of development lies in employing multiple types
of training algorithms simultaneously. This ERL method necessitates
designing separate sampling techniques for the solution space based on
the training strategy. Furthermore, it is crucial to consider how to use
sampled data from the same strategy for model training processes. In
addition, such algorithmic training imposes significant demands on the
computational capabilities of both CPU and GPU.

6.1.3. Computing overhead
Computing overhead is a closely related issue that must be taken

into consideration for ERL, in addition to the aforementioned prob-
lems. Implementing multiple ML or ANN models in ERL results in
an ultra-large number of parameters compared to a single model.
Particularly when each ANN model possesses a complex structure,
memory consumption becomes an indispensable factor. Similarly, mul-
tiple training algorithms can complicate the training process. Even with
computational acceleration techniques, the time required for numer-
ous computations can significantly exceed that of individual training
sessions. Many studies have found that ERL methods can complete
sampling efficiently, but are also accompanied by an increase in com-
putation time [15,95]. In the testing stage, complex decisions then
easily lead to longer computation time than other methods [106].
So, some researchers tried to design strategies based on scenarios,
which reduce the computational overhead to some extent. An et al.
achieved a reduction in model training time along with a reduction
in memory consumption by taking uncertainty into account in the ERL
method [38]. Pan et al. reduced the time consumed by the algorithm
for each iteration of training by fuzzifying the reward [45]. Up to now,
the number of computationally cost-reducing models is still small. So,
it is difficult to show that the improvement strategy is still applicable to
large-scale models. In addition, the cost of data interaction needs extra
attention when the models are deployed on multiple machines, which
will affect the efficiency of the system.

The cost-effectiveness of ERL using complex structures and training
processes is a fundamental basis for measuring method design and
algorithm training. Increasing the number of models can improve the
ensemble prediction performance but is also accompanied by an in-
crease in computing overhead. After a certain number of models are
implemented, the computing overhead of using more models can be
significantly greater than the improvement in method performance. In
such cases, increasing the size of the ensemble model is not advisable.

In certain practical application problems, the feasible solutions
obtained through ERL methods can as problem-solving outcomes. Con-
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trolling the number of iterations of the training process is an alternative
if the computing overhead of searching for the optimal strategy is much
greater than the contribution it can make. Thus, addressing the issue
of computing overhead is essential for the successful application of ERL
in various fields.

6.2. Future research directions

ERL has been extensively used in valuable research to effectively
address scientific problems and various application domains. Based on
the analysis of relevant literature mentioned in the survey, it is evident
that a majority of the research has been concentrated within the past
decade. Numerous unexplored research directions await investigation
by scholars, and this section presents several potential directions for
further inquiry.

1. Randomized models: Randomized models, such as random vec-
tor functional link networks [114], random initialized implicit lay-
ers, [115] have emerged as effective strategies for training reduction.
In addition, the utilization of implicit/explicit ensembles [116] can
improve the model training efficiency from the perspective of diversity.
Ensuring diversity among base learners is a core problem that needs to
be solved in the ERL method and deserves further study.

2. Effect of decision strategy: Decision strategies are employed to
derive the final output based on the predictive outcomes of individual
base learners. Despite various attempts made in previous studies to use
different types of decision strategies, there remains a dearth of system-
atic research investigating their impact. Accordingly, it is imperative to
conduct a comprehensive analysis of the decision strategies applicable
in various integrated models and the number of training algorithms.

3. Hierarchical ensemble: Hierarchical reinforcement learning
methods have been used to solve some challenging problems. For
example, Qin et al. and Ferreira et al. respectively, endeavored to
employ multiple RL models to complete different tasks separately
in order [33,67,68]. The current model structure is designed based
on empirical knowledge and lacks systematic theoretical validation,
which calls for further investigation. In the context of hierarchical
ensemble reinforcement learning, it is crucial to carefully evaluate
the performance of both individual RL models and ensemble models.
Additionally, a meticulous design should be employed to determine the
specific role of each element within the hierarchical framework in order
to address specific problems.

4. Large-scale ensemble: Existing ERL methods typically employ
around three base learners [52,55]. From the diversity perspective,
incorporating a larger number of models in a new ERL method can
effectively explore extensive feature information and enhance predic-
tion accuracy. From a statistical perspective, increasing the number
of ensemble components enables the generation of more hypotheses
and enhances the likelihood of identifying the optimal hypothesis. By
employing a large-scale ERL, it is possible to design an information-
sharing mechanism, thereby reducing the total training cost of the
model.

5. Distributed approach: Ensemble reinforcement learning can
also be trained or used in a distributed manner. Existing research on
distributed ERL primarily focuses on its implementation within a dis-
tributed framework and lacks methodological advancements [19,73].
Therefore, further analysis is warranted on how to effectively leverage
both ERL and distributed reinforcement learning. Integrating ERL into
a distributed framework inevitably incurs augmented costs associated
with model training and communication. Hence, in a distributed frame-
work, it becomes imperative to prioritize low-cost training methods and
controlled training time to ensure the practical applicability of ERL.

6. Online model training: Currently, ERL adopts offline train-
ing and direct online implementation. However, this model training
algorithm poses challenges in capturing the most up-to-date infor-
mation, thereby affecting the optimality of the agent’s strategy. To
address this limitation, incorporating online or near-online model train-

ing methods would enable the timely addition of new information to
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the training dataset, ensuring that the model can effectively respond
to dynamic situations. It is crucial for online training to focus on
establishing a triggering mechanism for model updates as both over-
training and under-training can adversely impact the performance of
the ERL method. Moreover, forgetting history memory can facilitate
ERL in discovering novel optimal strategies.

7. Efficient training: The sampling efficiency of DRL also deserves
ttention, as it remains a prevalent issue in ERL methods. Consequently,
his gives rise to several associated challenges, including data set par-
itioning for training, model parameter initialization, hyperparameter
uning, and strategy updating. Models from different training stages
an also be combined to identify the optimal configuration of model
ettings [53].

8. Embedded into big data platform: Although most of the current
tudies on ERL are conducted in simulation environments, there still
xists a gap between these findings and their practical application. To
ddress this issue, integrating ERL methods into a big data platform
nables timely inference based on system-acquired data for various
ractical forecasting tasks. For both short-term forecasting and long-
erm forecasting objectives, diverse ERL methods can be deployed
ithin the big data platform.

9. Hyperparametric reduction: The integration of multiple train-
ng algorithms in ERL can lead to a significant proliferation of hy-
erparameters within the method, thereby rendering model training
rduous. Moreover, the trained model may exhibit instability when the
cenario changes [76]. Hence, it is imperative to propose a mechanism
or reducing hyperparameter complexity and alleviating the burden on
esearchers involved in hyperparameter tuning. One solution idea to
olve this problem is to refer to the idea of pre-training by completing a
apid deployment of the model first. Subsequently, the deployed model
s simply tuned to improve performance.

The above aspects provide potential directions for future research,
lthough they are not exhaustive. It is important to acknowledge that
he design and problem-solving processes of ERL methods may en-
ounter various new situations. Furthermore, it should be noted that
he no free lunch theorem applies universally to all ERL methods [20].
herefore, when designing ERL methods, careful consideration must be
iven to their complexity and training time requirements.

. Conclusion

This paper presents a comprehensive review of the research progress
n ERL methods, covering various aspects including background, strate-
ies, applications, and future directions. Firstly, the description of RL
ethods and EL methods has enhanced the understanding of ERL.

econdly, various strategies, such as Q-function ensemble, model com-
ination, and decision strategies, are introduced and discussed. Sub-
equently, the application of ERL methods, datasets, and compared
ethods are described. Additionally, future research directions that

an further enhance the performance of ERL have been extensively
iscussed.

The robust predictive and classification capabilities of ERL ren-
er it a promising framework for addressing intricate problems. E
emonstrated successful applications across diverse domains, encom-
assing finance, robotics, and healthcare. Nevertheless, there exists
ubstantial potential for future research endeavors. This paper high-
ights potential research directions including randomized models, the
mpact of decision strategies, hierarchical ensembles, large-scale en-
embles, distributed approaches, online model training techniques, ef-
icient training methodologies, and integration of ERL into big data
latforms.

The future holds promising prospects for ERL performance across a
ider range of application domains. Consequently, it is imperative for

esearchers to persistently explore and develop novel ERL methods that
14

ffectively tackle the challenges encountered in practical scenarios.
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