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Abstract

Reinforcement Learning (RL) has emerged as a highly effective technique for addressing

various scientific and applied problems. Despite its success, certain complex tasks remain

challenging to be addressed solely with a single model and algorithm. In response, ensemble

reinforcement learning (ERL), a promising approach that combines the benefits of both

RL and ensemble learning (EL), has gained widespread popularity. ERL leverages multiple

models or training algorithms to comprehensively explore the problem space and possesses

strong generalization capabilities. In this study, we present a comprehensive survey on ERL

to provide readers with an overview of recent advances and challenges in the field. First,

we introduce the background and motivation for ERL. Second, we analyze in detail the

strategies that have been successfully applied in ERL, including model averaging, model

selection, and model combination. Subsequently, we summarize the datasets and analyze

algorithms used in relevant studies. Finally, we outline several open questions and discuss

future research directions of ERL. By providing a guide for future scientific research and

engineering applications, this survey contributes to the advancement of ERL.

Keywords: ensemble reinforcement learning, reinforcement learning, ensemble learning,

artificial neural network, ensemble strategy
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1. Introduction

Over the past several decades, reinforcement learning (RL) methods have proven to be

highly effective in solving complex problems across various fields, including gaming, robotics,

and computer vision. With the advent of breakthroughs such as deep Q neural networks [1],

AlphaGo [2], video games [3, 4], and robotic control tasks [5], RL has witnessed a revital-

ization that outperforms human performance. The success of this approach is attributed to

the agent’s ability to automate feature acquisition and complete end-to-end learning. Ar-

tificial neural networks (ANN) and gradient descent further enhance RL’s exploration and

exploitation capabilities, making it suitable for handling time-consuming manual work or

challenging tasks.

Figure 1: Components of the ERL method

Nevertheless, each type of RL has unique advantages and limitations. For instance, deep

reinforcement learning (DRL) requires extensive training to obtain a policy [4], leading to
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additional challenges such as overfitting [6], error propagation [7], and imbalance between ex-

ploration and exploitation [8]. These challenges serve as motivation for researchers to design

their models or training algorithms. One such approach is the implementation of ensemble

learning into the RL framework, which presents a novel way to enhance the learning and

representation ability of algorithms (see Figure 1). This method, called ensemble reinforce-

ment learning (ERL), has shown excellent performance in various applications. The idea of

ensemble learning was first demonstrated by Marquis de Condorcet [9], who showed that

average voting outperforms individual model decisions. Subsequent studies by Krogh and

Vedelsby [10], Breiman [11], and others have theoretically demonstrated the significant ad-

vantages of ensemble methods from different perspectives. The success of ensemble methods

in the field of deep learning and reinforcement learning is attributed to the decomposition

of datasets [12], powerful learning capabilities [13], and diverse ensemble methods [11].

Figure 2: A taxonomy of ERL according to agent cooperation and method deployment

The ERL method can be classified according to different criteria. It can be classified into

high-level ensembles [14] and low-level ensembles [15] based on the constituent elements.

It can also be classified into single-agent ERL [16] and multi-agent ERL [17] based on

the number of agents. Furthermore, centralized ERL [18] and distributed ERL [19] are

classifications of ERL based on how the agents work. Figure 2 gives a taxonomy according
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to agent cooperation and method deployment as criteria. All these taxonomies are reasonable

and can be used as reference frameworks for designing new ERL methods. Designing new

ERL methods can be done quickly based on the existing framework, while understanding

the effects of the strategies used in the framework allows for more focused design. In this

paper, we provide a detailed description of ERL methods according to the improvement

strategies used and discuss their applications to guide the design of new methods.

The existing literature on ERL encompasses a wide range of related work, covering

training algorithms, ensemble strategies, and application areas. The motivation of this

paper is to provide readers with a systematic overview of the existing related research, the

current research progress, and the valuable conclusions achieved. To the best of our

knowledge, this is the first survey focusing solely on ensemble reinforcement

learning. In this survey, we present the strategies used in ERL and related applications,

discuss several open questions, and provide a guide for future exploration in the ERL area.

The remainder of this paper is structured as follows. Section 2 presents the background

of ensemble reinforcement learning methods. Section 3 introduces implementation strategies

in ERL. Section 4 discusses the application of ERL to different domains. Section 5 discusses

the datasets and compared methods used in the ERL-related studies. Section 6 discusses

several open questions and possible future research directions. Section 7 gives the conclusion

of this paper. (See Figure 3).

2. Background

To aid readers in comprehending ensemble reinforcement learning methods, this section

provides a brief overview of reinforcement learning (RL) and ensemble learning (EL).

2.1. Reinforcement Learning

Reinforcement learning is an artificial intelligence method in which an agent interacts

with an environment and makes decisions to continuously correct errors to obtain optimal
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Figure 3: Structure of the paper
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decisions. Markov Decision Process (MDP) forms the foundation for using RL to solve

problems [20]. RL can be used when an agent’s decision is only related to the current state

and not to the previous state. Figure 4 illustrates the agent-environment interaction process.

A tuple 〈S,A, P,R, γ〉 can represent the MDP, where S denotes the state, A denotes the

action, P : S × A → P (S) denotes the state transfer matrix with the probability value

p(s′ | s) = p(St+1 = s′ | St = s), R : S × A→ R denotes the reward function, and γ ∈ [0, 1]

denotes the discount factor. The agent’s state at time step t is st, and it will take action at.

The combination of all states and actions defines a policy π. Here, the Q-value evaluates

the expected return obtained by the agent following policy π.

Qπ(s, a) = Eπ

[
∞∑
t=0

γtR(st, at)|s0 = s, a0 = a

]
(1)

The aim of using RL methods is to find an optimal policy π that maximizes Qπ. For

finite-state MDPs, Q-learning is the most typical RL method [21], which uses a Q-table

to record the combinations of 〈state,action〉. Subsequently, a series of RL methods using

artificial neural networks were proposed to cope with the infinite state space.

Figure 4: Interaction process between agent and environment

Training algorithms can be divided into model-based RL and model-free RL according

to whether the environment model in RL is given in advance or can be obtained through

learning. These training algorithms can also be classified according to state-based or policy-

based, or state-policy combination-based. More detailed research progress on RL can be
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found in ref. [22].

2.2. Ensemble Learning

Ensemble learning (EL) is a mainstream approach in the field of machine learning (ML).

The core idea of EL methods is to train multiple predictors, combine them, and make a

decision from all predictions as the final result of an ensemble model. Compared to individual

basic models, this EL method can harness the characteristics of various types of models to

improve the predictive performance of EL models and obtain more robust results. The main

types of ensemble learning methods include bagging [23], boosting [24], and stacking [25].

Figure 5 gives a schematic diagram of these three types of EL methods, where D denotes

the dataset, D1 to Dn denote the sample selection from the dataset, M1 to Mn denote the

model, and FR denotes the final result. The dotted line in Figure 5-(b) indicates that the

weights of samples in the dataset change with the next round of the dataset. The dotted line

in Figure 5-(c) indicates that all datasets are used for model prediction from level2 to levelL.

The main difference between these three types of methods is the way of sample selection.

These original and improved EL methods have been applied in various areas, and domain

knowledge implemented in the improved EL method achieves outstanding performance. In

summary, the EL method has been proven to be advantageous in the following three ways.

• Bias–variance Decomposition

The bias-variance decomposition has been widely employed to demonstrate the efficacy

of ensemble learning (EL) methods over individual learning methods. While bagging reduces

variance among base learners, other EL methods reduce both bias and variance. Krogh and

Vedelsby initially demonstrated the effectiveness of EL for problems with a single data set,

utilizing the idea of ambiguity decomposition to decrease variance [10]. Subsequently, Brown

et al. [26] and Geman et al. [27] verified the effectiveness of EL methods for problems with
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(a) Bagging [23] (b) Boosting [24]

(c) Stacking [25]

Figure 5: Schematic diagram of three types of EL methods
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multiple data sets. The decomposition equation can be expressed as follows [12]:

E[s− t]2 = bias2 +
1

N
var + (1− 1

N
)covar (2)

bias =
1

N

∑
i

(E[si]− t) (3)

var =
1

N

∑
i

E[si − E[si]]
2 (4)

covar =
1

N(N − 1)

∑
i

∑
j 6=i

E[si − E[si]][sj − E[sj]] (5)

where i denotes the i-th model of EL, s denotes the solution of the problem, and N denotes

the number of models in EL. The bias and variance are obtained using the average of the

differences between multiple models, while covar measures the pairwise difference between

models in the EL method.

For a single model, a decrease in bias leads to an increase in variance. However, the

ensemble model can be used used for prediction and reduce the variance without increasing

bias.

• Statistical Perspective

The advantages of EL from the statistical perspective are supported by the work of

Dietterich [13]. From a statistical point of view, a machine learning problem exists in a

search space with multiple hypotheses. The target of the prediction model is to find the

optimal hypothesis. The size of the data used for training is generally only a fraction of the

size within the search space, increasing the risk of making incorrect inferences. The use of an

EL method can reasonably combine these hypotheses to obtain a better understanding of the

search space features and reduce the chance of incorrect classification or invalid prediction.

• Diversity Perspective

The advantages of EL from the diversity perspective are intuitive and easy to understand.
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Dietterich points out that the combination of different base models can enhance diversity

[13]. Some typical EL methods, such as adaboost and random forest, show the importance

of diversity from the perspective of training data. And the use of random noise can enhance

the richness of the output. In other words, diversity allows decision-makers to combine the

model output with usage requirements to obtain a more reasonable final result.

3. Strategies for Ensemble Reinforcement Learning

Previous studies have shown that the Ensemble Reinforcement Learning (ERL) method

demonstrates superior average performance and sampling efficiency compared to Reinforce-

ment Learning (RL) methods, as evidenced by results obtained from public RL test sets and

practical tasks [15, 28]. By using ERL, the performance improvement can reach up to 20%

[29, 30, 31]. Moreover, for classification tasks, the ERL method achieves the best accuracy

scores across multiple benchmarks in the UCI online data repository [32, 33].

The strategies that ERL employed to perform better than other solution methods in

numerous problems are closely connected. Due to the varied improvements made to the

composition of ERL, these strategies can be categorized accordingly. The ensemble strate-

gies for ERL are diverse and include strategies for the Q-function, reward, and loss function

ensemble, as well as the combination of models, combination training algorithms, and deci-

sion strategies. In this section, we introduce these strategies separately.

3.1. Ensemble Strategies for Q-functions

In most Reinforcement Learning (RL) methods, the Q-function reflects how good the

agent is in any given state [20]. A ”good state” here means that the agent can obtain a high

expected return, which depends on the action taken by the agent. The classical Q-function

formula, applicable to Ensemble Reinforcement Learning (ERL) methods, is provided in the

background section. Besides, designing Q-functions specifically for the ERL method can

further improve the search performance of the algorithm [15, 34, 35, 36].
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A Maxmin Q-learning algorithm using multiple Q-functions was proposed by Lan et al.

[37] to evaluate the performance. The maxmin mechanism integrates multiple predicted val-

ues as a reference for agent decision-making. Specifically, the prediction term in the original

Q-value calculation formula is determined by the smallest of the multiple Q functions. The

performance of this algorithm is demonstrated by using the Mountain Car environment. It

can be seen from the results that the improvement of the Q-function has a positive effect on

both the convergence performance and the search performance of the algorithm.

Bayesian optimization is also utilized to improve the Q-function. Chen et al. applied

this idea in the design of the ERL method to update Q∗ using Bayesian optimization. This

method is mainly suitable for solving high-dimensional ERL problems, especially useful

when the solution space is ultra-large [8]. In this study, an upper-confidence bounds (UCB)

based solution space exploration strategy is used for the agent’s action selection. In the

experiment part, the Atari game is used to test the performance of the proposed method.

And the experimental results verify the effectiveness of the proposed strategy.

Some Q-value approximation methods from related work of RL can also be used in ERL

methods. Ghosh et al. used an ERL method based on a multi-agent framework to solve the

air traffic control problem [38]. A kernel-based Q-value approximation via sample transitions

is used to speed up the convergence [39].

3.2. Ensemble Strategies for Reward

Reward reflects the agent’s performance in actions taken based on the state. A good

decision generally corresponds to a high reward, while a problematic decision prompts the

agent to find and correct the error through the reward. Based on this, Yao et al. designed

an averaging reward calculation method for the ERL method, which allows the ERL method

to take into account the relationship between exploration and exploitation [40]. Then, a soft

actor-critic method is used to train Artificial Neural Network (ANN) models. This ERL

method is well suited to solve the problem of exploring unknown regions.
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The combination of reward functions in ERL can also be used with weight aggregation.

Lin et al. proposed an adaptive adjustment method for reward function weights combining

Upper Confidence Bounds (UCB) and error [41]. The weight update strategy allows the

ERL method to evaluate the correctness of previous policies and improve generalizability.

Qi et al. also used an ERL method with weighted reward aggregated functions to solve the

traffic signal control problem [42].

Although the traditional calculation method of reward is widely used, it has the short-

coming of a complex process. Compared to traditional methods, fuzzy-based methods can

reduce computational costs. A fuzzy set can affect the reward value obtained by agents by

measuring dissimilarity. Pan et al. proposed a dissimilarity evaluation metric for deciding

the weight value of each agent’s reward in ERL [43]. In this way, ERL can achieve a good

training effect with fewer iterations.

3.3. Ensemble Strategies for Loss Function

The loss function is an essential basis for Ensemble Reinforcement Learning (ERL) to

update the network parameters and improve the performance of agent decisions. A smaller

loss value indicates that the predicted value of the ERL model is closer to the actual value.

However, gradient explosion and gradient disappearance are two fatal problems that often

occur in the training process of Reinforcement Learning (RL) models. Some studies of ERL

have attempted to improve the accuracy of RL model decisions by improving the loss function

[15, 44, 45, 46]. Kumar et al. theoretically analyzed the bootstrapping error and proposed

an error accumulation reduction method to enhance the stability of ensemble Q-learning

algorithms [7].

Designing a global loss function for all models used is another approach specific to ERL.

Adebola et al. proposed an improved global loss function with each member model included

in the function [47]. Moreover, an interpolation method is used to control the difference

between policies that the algorithm needs to train. This ERL method can also optimize the
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agent’s policy selection using fine-tuning techniques. Based on this idea, Jiang et al. added

the training data error between models to the overall loss calculation formula for improving

prediction accuracy [19]. It can be seen from the experiment that this method is applicable

in mobile edge computing (MEC) systems for rational resource scheduling.

In addition, considering uncertainty is an effective way to improve the loss function. Sun

et al. used the uncertainty reduction technique to design an ensemble loss function [48],

which effectively prevents the RL model from falling into a local optimum. Within this

work, a distillation method is used to select the training data for the model. After that, the

performance of the proposed ERL method is verified by the Atari game.

3.4. Combination of Models

The ensemble of different types of models is a common and simple strategy in Ensemble

Reinforcement Learning (ERL). These models can be either Machine Learning (ML) models

or Artificial Neural Network (ANN) models. The structure of the model combination is

determined according to the specific problem and the solution target. A single type or a

combination of multiple types of models are both popular. For using only one type of model,

ANNs with different depths can be considered. While other studies use different random

initialization strategies [16] or ANN in different training stages [49]. Table 1 provides a

summary of related work ensemble model combination strategies. There are three models

mainly in relevant works, including ML models only, ANN models only, and ML&ANN mod-

els hybrid. Such an ERL framework is easy to implement and achieves better performance

than individual RL methods. A large-scale ensemble of numerous ML models and ANN

models (more than three) implemented in the ERL framework has also been attempted by

some researchers. Saadallah et al. [50], Li et al. [51], and Sharma et al. [52] are some

examples in this regard.

ERL can be divided into parallel ERL and sequential ERL according to the relationship

between base learners in ERL. Figure 6 and Figure 7 give schematic diagrams of these two
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Table 1: Combination of models

Year Author Combination of Models

2019 Dong et al. [53] long short-term memory network, gated recurrent unit
network

2019 Goyal et al. [46] convolution neural network, gated recursive unit
2020 Liu et al. [54] long short-term memory network, deep belief network,

echo state network
2020 Perepu et al. [55] a linear regression model, long short-term memory model,

artificial neural network, random forest
2021 Liu et al. [56] graph convolutional network, long short-term memory

networks, gated recursive unit
2021 Saadallah et al. [50] autoregressive integrated moving average, exponential

smoothing, gradient boosting machines, gaussian pro-
cesses, support vector regression, random forest, projec-
tion pursuit regression, MARS, principal component re-
gression, decision tree regression, partial least squares re-
gression, multilayer perceptron, long short-term memory
network (LSTM), Bi-LSTM: Bidirectional LSTM, CNN-
based LSTM, convolutional LSTM

2021 Daniel L. Elliott and
Charles Anderson [57]

convolution neural network, gated recursive unit, artifi-
cial neural network

2022 Shang et al. [30] gated recursive unit, graph convolutional network, graph
attention network

2022 Tan et al. [31] graph attention network, long short-term memory net-
works, temporal convolutional network

2022 Li et al. [58] gated recurrent unit, deep belief network, temporal con-
volutional network

2022 Zijie Cao and Hui Liu
[59]

temporal convolutional network, Bidirectional long
short-term memory network, kernel extreme learning ma-
chine

2022 Birman et al. [60] machine learning models, artificial neural network
2022 Li et al. [51] naive bayes, support vector machine with stochastic gra-

dient descent, FastText, Bi-directional long short-term
memory

2022 Sharma et al. [52] support vector regressor (SVR), eXtreme gradient boost-
ing (XGBoost), random Forest (RF), artificial neural net-
work (ANN), long short-term memory (LSTM), convo-
lution neural network (CNN), CNN-LSTM, CNN-XGB,
CNN-SVR, and CNN-RF

2022 Shi Yin and Hui Liu
[61]

group method of data handling, echo state network, ex-
treme learning machine

2023 Yu et al. [29] graph attention network, gated recursive unit, temporal
convolutional network14



Figure 6: Parallel ensemble reinforcement learning

Figure 7: Sequential ensemble reinforcement learning

ERL methods. In most ERL studies, such as Liu et al. [33], Schubert et al. [62], and Shen

et al. [63], base learners are constructed in a parallel framework. These ML or ANN models

are responsible for the same task. After each model processing, the final prediction result

will be generated by a certain strategy. There are also some studies, such as Qin et al. and

Ferreira et al., that try to construct the ERL method in the sequential framework [64, 65].

In this framework, the base learner completes the final prediction step by step in a certain

order [65].

3.5. Combination of Training Algorithms

Ensemble Reinforcement Learning (ERL) can not only use model combinations to ob-

tain diverse prediction results but can also use different training algorithms to achieve full

exploration of the solution space. Training algorithms can be classified into three categories:

state-based, policy-based, and state-policy combination-based. Each of these training algo-

rithms has its unique sampling strategy and output data characteristics. Researchers can

quickly use the training algorithms according to the application scenarios without focusing

on data sampling technology, which is similar to the EL method. Table 2 provides infor-

mation about studies using the combination strategy of training algorithms. There exists a
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Table 2: Combination of training algorithms

Year Author Combination of Training Algorithms

2008 Marco A. Wiering and
Hado van Hasselt [66]

Q-learning, Sarsa, actor-critic, QV-learning, ACLA

2018 Chen et al. [67] deep Q-networks, deep Sarsa networks, double deep Q-
networks

2020 Yang et al. [14] proximal policy optimization, advantage actor-critic,
deep deterministic policy gradient

2020 Saphal et al. [68] advantage actor-critic, sample efficient actor-critic with
experience replay, actor-critic using Kronecker-factored
trust region, deep deterministic policy gradient, soft
actor-critic, trust region policy optimization

2021 Smit et al. [28] double deep Q-Learning, soft actor-critic
2022 Eriksson et al. [69] residual gradient, TD, TD(λ)
2022 Németh, Marcell and

Szűcs, Gábor [70]
deep deterministic policy gradient, advantage actor-
critic, proximal policy optimization

new method of combining online and offline training algorithms or using training algorithms

based on different optimization strategies, which can take advantage of their respective

strengths to handle complex tasks. Accordingly, the complexity of ERL methods using such

improved strategies increases. For this reason, the training process of the ERL method takes

more time. Moreover, the ensemble model obtained also requires the design of a decision

strategy to select the prediction results that are closest to the actual situation.

Currently, the research related to the combination of training algorithms is not deep

enough and simply combines multiple typical algorithms. However, there are some similar-

ities between training algorithms. Transfer learning can be considered to transfer sampled

data to reduce the training time. In addition, the termination conditions of multiple training

algorithms also deserve in-depth analysis. Using the same number of iterations may result in

some models finding the best policy long ago, while some models still need further training.

Therefore, more research is required to investigate the combination of training algorithms

in ERL.
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3.6. Decision Strategies

In ERL, multiple base learners are implemented to obtain one result each, which may

lead to differences between the multiple results. Therefore, the ERL algorithm needs to

adopt certain decision strategies to determine the final model and output. In existing ERL-

based research, the common decision strategies include voting, optimal combination, binning,

aggregation, weighted aggregation, stacking, and Boltzmann multiplication (see Figure 8).

Figure 8: Decision strategies

Voting: Voting, as a common ERL decision strategy, records the number of occurrences

of each prediction at first [71]. Then, the final prediction can be selected from the results

according to the principle of majority or ranking.

Optimal Combination: For classification problems, this is a commonly used decision

strategy [72]. Multiple base classifiers are trained separately, from which the optimal subset

of models is selected to form an ensemble to classify the test set.
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Binning: Binning is a majority voting decision strategy with continuous action space

[68]. First, the action space is discretized into multiple intervals. After that, the number

of occurrences of the actions in each interval is recorded. Finally, the average value of the

action within the interval with the highest number of occurrences is selected as the final

prediction result.

Aggregation: The prediction results of all the models in ERL are summed to produce

an overall evaluation value, which is taken as the final result [51]. In the aggregation method,

each model is considered to be equally reliable.

Weighted Aggregation: The prediction results obtained from different models are

summed according to their weights [55]. A high value of weight is used for aggregation

models with high prediction accuracy.

Stacking: First, an additional machine learning model is involved to further predict the

results of base learners. Then, the output of this machine learning model is used as the final

prediction result [60].

Boltzmann Multiplication: Boltzmann distribution is the basis for decision making

[66]. The probability value of each action can be calculated according to the Boltzmann

distribution. The outcome with the highest probability value is selected and will not be

changed.

In summary, the selection of decision strategies in ERL depends on the specific appli-

cation scenario and the characteristics of the base learners. At present, there is no related

study on the in-depth analysis of the application scenarios of these strategies. This study is

helpful to improve the prediction accuracy of ERL methods. It will also promote the process

of ERL research.

3.7. Discussions

Strategies play a crucial role in designing ERL methods. Among the strategies for im-

proving the ERL element, the model combination is the easiest to implement. The model
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combination allows the ERL method to have multiple machine learning models or ANN

search strategies simultaneously, which is sufficient for some practical application problems.

The training algorithm combination strategy is slightly more complicated than the model

combination. If researchers use this strategy, they need to understand the conditions of

use of each training algorithm and design the combination of algorithm and model accord-

ingly. When ERL models are used in a multi-agent or distributed framework, some new

framework-related issues arise, such as how base learners interact with the environment and

whether training is done independently or jointly.

Other strategies, such as improved Q-functions, reward, and loss functions are considered

for the generalization of ERL methods. This requires researchers to propose new methods,

which can be applied to various types of practical application problems. What’s more, the

decision strategy is another aspect that can improve the performance of ERL. The outputs

from multiple base learners may be similar or significantly different. These outputs can be

adopted in their entirety, or only one or more of them can be selected as the result. There

are few studies related to the combined use of decision strategies, and using this method

allows the ERL to search the solution space comprehensively. The design of which strategy

to use under which conditions becomes an important factor for the strategy combination to

work. The idea of integration can also be used in decision strategies, where a new model

evaluates the performance of the results by using various decision strategies.

4. Applications of Ensemble Reinforcement Learning

A significant portion of existing ERL-based research involves discrete/continuous control

actions [41, 73, 74, 75] and game environments [76, 77, 78] to verify the effectiveness of

proposed algorithms. Additionally, researchers have attempted to utilize ERL methods to

solve practical application problems. Figure 9 illustrates the main application areas of ERL,

which encompass energy and environment, IoT and cloud computing, finance, and other
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areas. Among these, energy and environment is the most widely studied application area of

ERL. In this section, we discuss the application of ERL in various domains.

Figure 9: The summary of the different application areas of ERL

4.1. Energy and Environment Area

As the global economy continues to grow, energy and environmental issues have gar-

nered increasing attention worldwide. The use of neural network methods to predict future

conditions using historical data has become the basis for policy formulation. In this type of

prediction problem, there exists a spatiotemporal relationship between data, which makes

the recurrent neural network (RNN) preferred. In these related studies, ERL methods com-

bine multiple classical RNN models to obtain more reliable conclusions. Table 3 shows some

recent applications of ERL in the energy and environment domain. It can be seen that

wind power and PM 2.5 prediction are hot research topics. From a statistical point of view,

sixty-four percent of ERL-based studies used Q-learning as the training algorithm, while
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the remaining studies used Sarsa, deep Q-network, and deep deterministic policy gradient

algorithms. Overall, the application of ERL methods in the energy and environment area

focuses on ensemble models. In these studies, reinforcement learning algorithms are mainly

used directly. Compared with traditional studies using machine learning (ML) or artificial

neural network (ANN) prediction methods [79, 80], there is a significant gap between the

prediction results obtained by these methods and ERL.

Table 3: Application in energy and environment area

Year Authors Problem Training Algorithm

2020 Liu et al. [54] wind speed short term fore-
casting

Q-learning

2021 Jalali et al. [81] solar irradiance forecasting Q-learning
2021 Liu et al. [56] PM2.5 forecasting Q-learning
2021 Li et al. [82] PM2.5 forecasting Q-learning
2021 Chao Chen and Hui

Liu [83]
wind speed prediction deep Q-Network

2021 Jalali et al. [84] wind power forecasting Q-learning
2022 Tan et al. [31] PM2.5 prediction Sarsa
2022 Qin et al. [85] unit commitment problem deep Q-Network
2022 Sogabe et al. [86] smart energy optimization

and risk evaluation
Q-learning

2022 Sharma et al. [52] estimating reference evapo-
transpiration

Q-learning

2022 He et al. [87] wind farm control deep deterministic policy
gradient

2022 Jalali et al. [88] solar irradiance forecasting Q-learning
2022 Shi Yin and Hui Liu

[61]
wind power prediction Q-learning

2023 Yu et al. [29] wind power prediction deep deterministic policy
gradient

4.2. Internet of Things and Cloud Computing Area

In the area of the Internet of Things (IoT) and cloud computing, ERL is widely used

to optimize system performance and business processing capabilities. The IoT connects

various devices such as sensors, smart terminals, and industrial systems to form a globally
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interconnected system. Optimizing the efficiency of these devices and facilities has a positive

impact on improving the overall performance of IoT systems. Cloud computing is another

technology closely related to the IoT. Users can access computing resources or services in

this distributed system provided by a cloud platform over the network on demand. Resource

allocation and optimization have been the focus of research in the IoT and cloud computing

area. Table 4 presents the applications of ERL methods in this area. Here, most studies

use the offline algorithm, except for Polyzos et al. [89], who used an online algorithm. The

performance of the ERL method has been verified on simulation platforms [90]. It can be

seen from experimental results that the use of ensemble models makes the ERL method

schedule significantly better than compared RL methods. When applying ERL in this area,

matching the application requirements of multi-agent and distributed architecture becomes

a core point. This system architecture allows the ensemble models in ERL to handle the

same or different tasks.

Table 4: Application in IoT and cloud computing area

Year Authors Problem Training Algorithm

2020 Ashiquzzaman et al.
[91]

IoT sensor calibration deep Q-Network

2021 Polyzos et al. [89] resource allocation Sarsa
2021 Jiang et al. [19] large-scale MEC systems deep Q-Network
2021 Gu et al. [92] online cloud task scheduler deep deterministic policy

gradient
2021 Liu et al. [93] deep reinforcement learn-

ing training on GPU cloud
platform

actor-critic network

2022 Mahmud et al. [94] non orthogonal multiple ac-
cess unmanned aerial net-
work

deep Q-Network
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4.3. Financial Area

In the financial area, complex decision-making problems, such as pricing financial prod-

ucts and portfolio optimization, are being tried to be solved by ERL methods. Though

single models can make predictions on a specific problem, their generalization is affected by

the problem scenario. Compared with the single model, ensemble models are affected less by

the problem scenario factors. Table 5 presents the applications of ERL methods in finance.

In these studies, 67% used only one training algorithm, while the rest of the studies used

multiple training algorithms in an ERL method. Three algorithms, namely proximal policy

optimization, advantage actor-critic, and deep deterministic policy gradient, have shown

good performance in training.

Table 5: Application in financial area

Year Authors Problem Training Algorithm

2020 Yang et al. [14] stock trading proximal policy optimiza-
tion, advantage actor-
critic, deep deterministic
policy gradient

2020 Xu et al. [95] fuel economy improvement Q-learning
2021 Carta et al. [49] stock market forecasting deep Q-Network
2022 Li et al. [58] regional GDP prediction deep Q-Network
2022 Zijie Cao and Hui Liu

[59]
carbon price forecasting Q-learning

2022 Németh, Marcell and
Szűcs, Gábor [70]

algorithmic trading proximal policy optimiza-
tion, advantage actor-
critic, deep deterministic
policy gradient

4.4. Other Areas

Apart from the previous three classic application areas, Ensemble Reinforcement Learn-

ing (ERL) has also been successfully applied in other areas such as transportation, medicine,

and security, which will be discussed in this section. Table 6 provides an overview of these
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applications. ERL methods primarily focus on making predictions. Only a few classification

problems such as diagnosis and recognition are solved using ensemble ideas. The work of

Eriksson et al. [69], who used ERL methods on autonomous driving problems, is particu-

larly noteworthy. If the ERL method can be successfully applied to the automatic assisted

driving of small cars, it is likely to trigger a new research and application boom in this area.

Table 6: Application in other areas

Year Authors Problem Area

2021 Ghosh et al. [38] air traffic control traffic
2021 Dong et al. [53] traffic speed forecasting traffic
2022 Shang et al. [30] traffic volume forecasting traffic
2022 Qi et al. [42] traffic signal control traffic
2022 Eriksson et al. [69] autonomous driving traffic
2016 Tang et al. [96] symptom checker medicine
2021 Jalali et al. [72] COVID-19 diagnosis medicine
2022 Birman et al. [60] malware detection security
2022 Li et al. [51] rumor tracking security
2023 Henna et al. [97] FSO/RF communication

systems
optics

2019 Cuayáhuitl et al. [98] chatbots dialogue system
2010 Alexander Hans and

Steffen Udluft [34]
pole balancing engineering control

2018 Ferreira et al. [65] cognitive satellite commu-
nication

aerospace

In the future, we expect to see more areas using ERL methods for complex tasks. Existing

research results can provide valuable references for subsequent research, including improving

existing algorithms to overcome their limitations, or extending the problem domain to obtain

new insights. In the next section, we discuss some potential directions for future research

on ERL methods.
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5. Datasets and Compared Methods

This section examines the datasets and comparison methods used in various studies re-

lated to Ensemble Reinforcement Learning (ERL). As presented in Table 7, experiments

are conducted to evaluate the performance of the proposed ERL methods. The datasets

used in these experiments mainly include real-world data and publicly available datasets or

environments. Real-world data are useful for objectively testing the predictive or classifica-

tion performance of the method for specific applications. For instance, studies in the field

of energy and environment have collected data from multiple cities to predict desired out-

comes [29, 54]. In contrast, publicly available datasets or environments such as the OpenAI

Gym environment in the field of reinforcement learning are widely used to test the predic-

tive performance of algorithms for continuous/discrete actions [103]. The most commonly

used public dataset for classification problems is the UCI machine learning repository [33].

Furthermore, some medical-specific datasets are also utilized in studies of disease diagnosis

[72].

To evaluate the effectiveness of the proposed ERL methods, various comparison methods

are used in the literature. The single model-based RL method (SM-RL) is one of the simplest

ways to reflect the effectiveness of the proposed ERL method [62]. The training algorithm

used in SM-RL remains the same as that in the ERL method. However, this compared

method has limited convincing power. Therefore, some other studies have used other training

algorithms to compare with the proposed algorithm from another perspective [15, 38]. To

comprehensively test the effectiveness of algorithms, different models, training algorithms,

and integration methods should be separately evaluated [54].

25



Table 7: Datasets and compared Methods

Year Authors Dataset Compared Methods

2016 Osband et al. [99] Atari games DQN
2017 Chen et al. [8] Atari games A3C+
2017 Partalas et al.

[100]
UCI machine learning repository classifier combination methods voting (V) and SMT and the forward

selection (FS), selective fusion (SF)
2018 Pearce et al. [101] Cart Pole control problem Q-learning with different layer NNs
2019 Dong et al. [53] traffic speed dataset GRU, LSTM, MLP, RBF, LSTM-GRU-GA
2019 Pan et al. [43] Maze, Mountain Car, Robotic

Soccer Game Simulation
counterpart

2019 Goyal et al. [46] CATS (Competition on Artificial
Time series) dataset

LSTM, ANN, Linear regression, Random Forest, Online NN

2019 Macheng Shen
and Jonathan P
How [102]

two-player asymmetric game single model, RNN

2020 Qingfeng Lan et
al. [37]

Mountain Car Q-learning, Double Q-learning, Averaged Q-learning

2020 Liu et al. [54] three different groups of mea-
sured wind speed data from Xin-
jiang wind farms

Network: LSTM method, the DBN method, the ESN method; Training
algorithm: SARSA

2020 Lin et al. [41] Maze, soccer robot game orthogonal projection inverse reinforcement learning method (OP-IRL)
2020 Junta Wu and

Huiyun Li [73]
2D Robot Arm Open Racing Car
Simulator (TORCS)

DDPG

2020 Yang et al. [14] Dow Jones 30 constituent stocks
(at 01/01/2016)

PPO, A2C, DDPG

2020 Liu et al. [33] UCI online data repository classifiers combination approaches majority voting (MV), weighted vot-
ing (WV), ensemble selection methods forward selection (FS)

2021 Ghosh et al. [38] open source air traffic simulator PPO
2021 Jalali et al. [81] GHI data sets adaptive hybrid model (AHM), hybrid feature selection method (HFS),

Outlier-robust hybrid model (ORHM), novel hybrid deep neural net-
work model (NHDNNM), OHS-LSTM

2021 Liu et al. [56] data collected from a congested
intersection in Changsha

RNN, ENN, ESN, DBN, RBF, GRNN, MLP

2021 Jalali et al. [72] two well-known open-source im-
age datasets named as Mendely
and Kaggle

original version of GSK and eight powerful evolutionary algorithms in-
cluding grasshopper optimization algorithm (GOA), Slime mold algo-
rithm (SMA), genetic algorithm, gray wolf optimizer (GWO), particle
swarm optimization (PSO), differential evolution (DE), biogeography-
based optimization (BBO)

2022 Hassam Ullah
Sheikh et al. [15]

Mujoco environments, Atari
games

TD3, SAC and REDQ

2022 Shang et al. [30] actual traffic volume data of nine
stations of Changsha freeway

Chebnet, CNN, LSTM, DBN, RNN, ESN, multi-layer perceptron (MLP)

2022 Tan et al. [31] actual data RNN, the deep belief network (DBN), the echo state network (ESN),
the error encoding network (ENN), General Regression Neural Network
(GRNN), radial basis function network (RBF), multilayer perceptron
(MLP)

2022 Li et al. [58] three sets of data from three
Provinces of China

ESN, ENN, RNN, BPNN, ELM, RBF

2022 Cao et al. [59] The data for the three carbon
trading markets come from the
Hubei Carbon Trading Network,
Beijing Carbon Emissions Elec-
tronic Trading Platform, and In-
ternational Carbon Action Part-
nership (ICAP)

Network: TCN, BiLSTM, KELM, BPNN, MLP, echo state network
(ESN), Elman neural network (ENN), and gradient boosting decision
tree (GBDT); Training algorithm: SARSA

2022 Qin et al. [85] historical load data of the Califor-
nia Independent System Operator
(CASIO) from January 1, 2021 to
July 5, 2021

PPO guided tree search, the MIQP algorithm with Gurobi 9.1

2022 Sogabe et al. [86] optimal energy management in a
residential building microgrid

mixed-integer linear programming (MILP)

2022 Birman et al. [60] a range of real-world scenarios Aggregation method
2022 Li et al. [51] PHEME, RumorEval Naive Bayes, SVM-SGD, Dense, BiLSTM, FastText, TextCNN, VRoC,

some combinations of above methods
2022 Sharma et al. [52] two MEC servers and 30 IoTDs

randomly distributed in the
squared area with size 50m×50m

Actor-Critic, DDPG

2022 Schubert et al.
[62]

SymCat’s symptom-disease
database

single model-based RL

2023 Yu et al. [29] actual wind power data of nine
wind turbines

GMDH, DBN, ESN, ENN, the extreme learning machine (ELM), the
radial basis function (RBF), multi-layer perceptron
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6. Open Questions and Future Research Directions

6.1. Open Questions

In this section, we highlight three open questions in the field of Ensemble Reinforcement

Learning (ERL) that can contribute to the future development of ERL (see Figure 10).

Figure 10: Open Questions

6.1.1. Which Models to Choose?

Models are the basis for constructing ERL methods and have a direct impact on the

final output. The most critical aspect of model selection is the ability to feature selection

and learning. If a model cannot learn valid information, it is meaningless. Compared to

methods using a single model, ensemble methods that use multiple same or different models

can reduce the possibility of incorrect inference and improve the overall predictive perfor-

mance. Accordingly, the models implemented should be beneficial to the overall predictive

performance ERL method.

The models implemented in ERL mainly include ML and ANN models, which have

a simple structure and strong generalization ability and are suitable for some practical

applications. If the data scale is large and there are many features, ML models may be

difficult to handle. In this case, it is easier for the ANN model to get features from the

dataset and get the prediction results close to the actual value. However, some tasks that

need to be understood are difficult for ANN models. Some studies such as [50], [60] have

considered implementing ML models and ANN models together into ERL methods.
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Using models with different training stages simultaneously is much easier for ERL design

[49]. There are differences in the parameters within these models, and the predicted bias

and variance are also distinctive. If such an ensemble model is used, it is worthwhile to

deeply investigate what conditions are chosen to save each ensemble element in the training

process.

Some studies have used proposed ensemble pruning methods like forward selection (FS)

[104], and selective fusion (SF) [105] to automate the optimization of model structures. In

these studies, a model library is used to select models, which can reduce the human selection

effort to a certain extent. The model library can also be continuously extended based on

the latest research to optimize the overall performance of the ERL.

6.1.2. Which Training Algorithms to Use?

Model training is a well-known challenge in the ERL method. For model-free based ERL,

the agent updates model parameters based on state transfer or trajectory after a certain

number of iterations. But there is no guarantee that all the data obtained by sampling are

useful. The classic strategy is to use experience delay technology, which can improve the

sampling efficiency. While Schaul et al. [106] found that the sampling inefficiency problem

occurs when the sample in the relay buffer is useless. Selected experience relay makes the

algorithm training more efficient by selectively choosing the adopted data into the replay

buffer [107]. It is worth noting that the experience relay buffer is only applicable to the off-

policy RL method. Besides, the model-based RL method can guarantee sampling efficiency

by learning the environment model. However, such a training algorithm has to face a huge

action space. In this case, approximating the environment model becomes an extremely

difficult task.

Good training algorithms should balance exploration and exploitation, whereas, it is

difficult to achieve by using only one. Therefore, using multiple types of training algorithms

simultaneously should be the general trend for future development. This ERL method

28



requires designing the sampling technique of the solution space according to the training

strategy separately. How to use sampled data from the same type of strategy for model

training processes is also worth considering. In addition, such algorithm training will have

high requirements on the machine’s CPU and GPU computing ability.

6.1.3. Computing Overhead

Computing overhead is another issue that is closely related to the first two problems and

has to be considered for ERL. Compared to a single model, multiple ML or ANN models

implemented in ERL make the number of parameters ultra-large. Especially when each

ANN model has a complex structure, memory consumption becomes a factor that cannot

be ignored. Similarly, multiple training algorithms can complicate the training process.

Even when using techniques related to computational acceleration, the time consumed by a

large number of computations can be significantly longer than that of the individual training.

Many studies have found that ERL methods can complete sampling efficiently, but are also

accompanied by an increase in computation time [15, 89]. In the testing stage, complex

decisions then easily lead to longer computation time than other methods [100]. So, some

researchers tried to design strategies based on scenarios, which reduce the computational

overhead to some extent. An et al. achieved a reduction in model training time along with

a reduction in memory consumption by taking uncertainty into account in the ERL method

[36]. Pan et al. reduced the time consumed by the algorithm for each iteration of training by

fuzzifying the reward [43]. Up to now, the number of computationally cost-reducing models

is still small. So, it is difficult to show that the improvement strategy is still applicable to

large-scale models. In addition, the cost of data interaction needs extra attention when the

models are deployed on multiple machines, which will affect the efficiency of the system.

The cost-effectiveness of ERL using complex structures and training processes is a fun-

damental basis for measuring method design and algorithm training. Increasing the number

of models can improve the ensemble prediction performance but is also accompanied by an
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increase in computing overhead. After a certain number of models are implemented, the

computing overhead of using more models can be significantly greater than the improve-

ment in method performance. In such cases, increasing the size of the ensemble model is

not advisable.

In some practical application problems, feasible solutions obtained by ERL methods can

serve as problem-solving results. Controlling the number of iterations of the training process

is an alternative if the computing overhead of searching for the optimal strategy is much

greater than the contribution it can make. Thus, addressing the issue of computing overhead

is essential for the successful application of ERL in various fields.

6.2. Future Research Directions

There has been a lot of valuable research that uses ERL well to solve problems in science

and multiple application areas. Based on the analysis of relevant literature mentioned in

the survey, it can be seen that most of the research is concentrated within the last decade.

There are still many directions waiting to be explored by researchers. Here, some potential

research directions are given.

1. Randomized models: Randomized models, such as random vector functional link

networks [108], random initialized implicit layers [109] are an effective strategy to reduce

training. In addition, implicit/explicit ensembles [110] can improve the model training

efficiency from the perspective of diversity. Ensuring diversity among base learners is a core

problem that needs to be solved in the ERL method and deserves further study.

2. Effect of decision strategy: decision strategy is used to obtain the final output

based on the prediction results of individual base learners. Although existing studies have

tried to use various types of decision strategies, there is a lack of systematic research on the

effect of strategies. Accordingly, the decision strategies applicable in the case of different

integrated models and the number of training algorithms are worth analyzing in detail.
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3. Hierarchical ensemble: Hierarchical reinforcement learning methods can be used

to solve some challenging problems. For example, Qin et al. and Ferreira et al. respectively

tried to use multiple RL models to complete different tasks separately in order [31, 64, 65].

The current model structure is designed from experience and lacks systematic theoretical

validation. The performance of the single RL model and the ensemble model should be

weighed in hierarchical ensemble reinforcement learning. The role of each element in the

hierarchical framework also deserves a detailed design according to specific problems.

4. Large-scale ensemble: The number of base learners used in existing ERL methods

is generally about three [55, 57]. From the diversity perspective, a larger number of models

constituting a new ERL method can explore a large amount of feature information and make

accurate predictions. From the statistical point of view, the increase of ensemble components

can make more hypotheses and increase the chances of finding the optimal hypothesis. If a

large-scale ERL is used, the information-sharing mechanism between base learners can be

designed, which reduces the total training cost of the model.

5. Distributed approach: Ensemble reinforcement learning can also be trained or

used in a distributed manner. Existing distributed ERL-based research only uses ERL in a

distributed framework and lacks methodological improvements [19, 69]. Therefore, how to

take advantage of both ERL and distributed reinforcement learning deserves further analysis.

The implementation of ERL into a distributed framework will inevitably lead to increased

model training and communication costs. In a distributed framework, it is necessary to focus

on low-cost training methods and controlled training time to ensure that ERL is applied to

practical scenarios.

6. Online model training: Currently, ERL adopts offline training and direct online

use. This model training algorithm will make it difficult for the model to grasp the latest

situation. Accordingly, the strategy adopted by the agent is not optimal. If online or near-

online model training methods can be used, new information will be added to the training
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dataset in time to ensure that the model can respond to the latest situation. Online training

needs to focus on the triggering mechanism of model training, over-training or under-training

can have a negative impact on the performance of the ERL method. Moreover, forgetting

history memory can also help ERL find new optimal strategies.

7. Efficient training: The sampling efficiency of DRL also deserves attention, as this

problem is still prevalent in ERL methods. Therefore, this raises many related problems,

such as how to split the data set for training, initialize the model parameters, set the

hyperparameters, and update the strategy. Models belonging to different training stages

can also be used together to find the optimal combination of model configurations [49].

8. Embedded into big data platform: Most of the current ERL-related studies are

based on simulation environments, which is still a certain gap from practical application.

For some practical forecasting tasks, integrating ERL methods into a big data platform

can make timely inferences based on the data obtained from the system. For short-term

forecasting and long-term forecasting, diverse ERL methods can be deployed in the big data

platform according to the forecasting objectives.

Future research can be carried out in the above but not limited to these aspects. Cer-

tainly, several new situations will also be encountered when designing methods and solving

problems. It should be understood that no free lunch theorem applies to any ERL method

[20]. So, the complexity and the training time need to be taken into account in the design

process of ERL methods.

7. Conclusion

This paper has provided a comprehensive review of the research progress on ensemble

reinforcement learning (ERL) methods from the background, strategies, applications, and

other aspects. First, the description of reinforcement learning methods and ensemble learn-

ing methods has enhanced the understanding of ERL. Then, various strategies, such as
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Q-function ensemble, model combination, and decision strategies, are introduced and dis-

cussed. After that, the application of ERL methods, datasets, and compared methods are

described. Moreover, we have discussed future research directions that can further improve

ERL’s performance.

ERL’s powerful predictive or classification capability makes it a promising framework

for solving complex problems. ERL has been successfully applied in various fields, including

finance, robotics, and healthcare. However, there is still considerable potential for future re-

search. The potential research directions highlighted in this paper include randomized mod-

els, the effect of decision strategy, hierarchical ensemble, large-scale ensemble, distributed

approach, online model training, efficient training, and embedding ERL into big data plat-

forms.

We believe that ERL can achieve satisfactory performance in more application areas

in the future. Therefore, researchers need to continue exploring and developing new ERL

methods to address the challenges encountered in practical applications.
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