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A B S T R A C T

The satellite range scheduling problem (SRSP) is a range of combinatory optimization, which plays a vital role
in the regular operation and mission accomplishment of in-orbit satellites. However, with the increase in the
number of satellites and the client requirements, there is some limitation in dealing with the SRSP for existing
methods, especially on large-scale problems. Therefore, we propose a deep reinforcement learning (DRL)
method, which is integrated into a heuristic scheduling method for the satellite range scheduling problem.
The core idea of the algorithm is to decompose the problem into two subproblems: (1) Assignment problem,
which assigns each task on different antennas. (2) Single antenna scheduling problem, which determines the
execution start and end time of selected tasks on the antenna. The two subproblems are performed iteratively
and modeled as a general paradigm. In the paradigm, the DRL is to determine the process of task assignment,
and the heuristic scheduling method can quickly solve the single antenna scheduling problem. The objective
function of the scheduling problem is to maximize the total reward. The DRL updates the gradient information
based on the reward obtained by the heuristic scheduling method. To verify this idea, various scale experiments
are considered to examine the performance of training scenarios. Experimental results show that the proposed
paradigm combining DRL with a heuristic scheduling method can effectively deal with the SRSP.
1. Introduction

The communications between satellites and ground stations have
received increasing interest in recent years [1]. In particular, commu-
nication in military and civilian missions plays a significant root in
a variety of services. These services, including weather predictions,
surveillance, geodesy, and navigation, need to be provided by satel-
lites [2–4]. However, with the increase of satellites and the limitation of
ground stations, scheduling satellites to service efficiently is becoming
a challenging issue.

The satellite range scheduling problem (SRSP) is the process of
selecting appropriate ground station antennas and time windows [5] for
satellites’ communication. SRSP was proposed by the Air Force Institute
of Technology in [6]. The SRSP composes a set of satellite requests, a
set of ground station antennas, and the visibility time windows of each
request-antenna pair [7]. If a scenario only includes a single antenna,
the problem is defined by single-resource range scheduling; otherwise,
it is called multi-resource range scheduling. In the paper, the visibility
time windows are provided by customers. The communication between
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satellite requests and ground station antennas must be done within the
range of visible windows. An antenna only supports a satellite request
at a visible time window [8]. When an antenna is communicating
with a satellite, it may or not allow for interruption due to a high-
priority request. Furthermore, there are numerous constraints in the
SRSP, which include a fixed turnaround time for supporting successive
satellite requests.

The SRSP is a typical NP-hard combination problem [9,10], which
schedules ground stations on satellites to satisfy some constraints ef-
ficiently. Moreover, with the increase in resources and the mission,
settling large-scale SRSP and providing efficient customer service is
becoming challenging. Thus, some deterministic algorithms [11,12]
for SRSP were proposed. These deterministic algorithms can find a
set of optimal solutions under simple constraints. However, multiple
constraints and large scale of tasks and antennas make it difficult
for these algorithms to find optimal solutions. The population-based
algorithms can handle highly complex constraints and obtain a set
of approximate solutions in a relatively short period. Compared with
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deterministic algorithms, population-based algorithms are effective in
dealing with SRSP. Thence, these algorithms have been widely accepted
as a tool for SRSP. But, providing fast and reliable solutions is still
a challenging task for population-based algorithms. Therefore, it is
necessary to design an efficient algorithm to deal with SRSP.

Deep reinforcement learning (DRL) has recently attracted much
attention from researchers in the field of combinatorial optimization.
Most of the research makes use of DRL to learn the searching rules,
including the traveling salesman problem (TSP) [13], job-shop schedul-
ing problem (JSP) [14], and vehicle routing problem (VRP) [15]. The
model of DRL is trained by the trial-and-error process and can be
regarded as a black-box heuristic, which is obtained by training the
characteristic of the problem [16]. By the trained network, the optimal
solutions can be obtained in a very short time. In addition, there is a
strong generalization ability in the trained DRL model, which can solve
the problem of unexplored characteristics [17].

In the study, SRSP is first decomposed into two subproblems, i.e., an
assignment problem and a single antenna scheduling problem. Then,
the DRL method determines tasks to be assigned to different antennas,
while a heuristic scheduling method obtains a scheduling plan for
each antenna. Hence, each antenna can solve the SRSP by a range of
subproblems. The main contributions of this paper are summarized as
follows:

(1) A general paradigm composed of a DRL and a heuristic schedul-
ing method is developed to deal with the SRSP. In the paradigm,
the SRSP is modeled into two subproblems solved by two differ-
ent technologies.

(2) In order to learn the characteristics of the satellite mission, the
DRL-based method is modeled and decides the process of task
assignment.

(3) In order to verify the performance of the proposed algorithm,
we consider some scenarios. Experimental results show that the
proposed paradigm can outperform other algorithms in dealing
with the SRSP.

This paper is organized as follows. Section 2 reviews existing studies
n the SRSP and technologies. Section 3 provides a preliminary for the
RSP. Section 4 presents the proposed algorithm in detail. Section 5
ives experimental results and a comparison of the algorithm to other
lgorithms. Finally, a conclusion is shown in Section 6.

. Literature review

SRSP is a class of combinatorial optimization problems that have
eceived much attention in recent years. The research of SRSP is
f great importance in major national projects and national defense
onstruction. An increasing amount of optimization methods are con-
idered to solve the SRSP. The optimization methods for SRSP can
e divided into three categories: deterministic algorithms, population-
ased algorithms, and machine learning algorithms. In this section, we
ainly review the three methods.

(1) 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠: The deterministic algorithms can guar-
antee the optimal solution under certain assumptions by mathematical
programming approaches, such as branch and bound [12,18], tree
search [19,20], dynamic programming [21,22]. When the scale of the
problem is large, the exact algorithm can provide a solution to the
problem on the one hand and an initial solution for the heuristic
method; on the other hand, a better solution can be searched. Due to
the high computational cost of the exact algorithm, it is difficult to use
in large-scale practical problems. For example, Barulescu et al. [23]
proposed a heuristic method for actual SRSP. Luo et al. [5] proposed
a combination of relaxation and heuristics to obtain a more accurate
upper bound for the SRSP. Marinelli et al. [24] developed a Lagrangian
version of the Fix-and-Relax MIP heuristic. Chen et al. [25] used
an improved adaptive large neighborhood search algorithm for SRSP.
2

Although it has a better result according to the experimental analysis, p
the cost of the method is time-consuming [5]. The solution time of the
exact solution algorithm for large-scale problems is difficult for users
to accept [24,26].

(2) 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑏𝑎𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠: The population-based algorithms
an obtain an approximation solution by meta-heuristic approaches,
uch as genetic algorithm (GA) [27,28], ant colony optimization (ACO)
29,30], and particle swarm optimization (PSO) [31]. These heuristic
pproaches, which work with a population of solutions, have been
idely accepted as a major tool for solving SRSP. Compared with

he deterministic algorithms, these meta-heuristic approaches are able
o obtain a set of approximation solutions at a lower computational
ost. The research of these meta-heuristic approaches [27,29] has been
onsidered promising to solve SRSP. For example, Deb et al. [32]
roposed a pareto-based evolutionary algorithm for improving the
opulation convergence and diversity by a non-dominated sorting and
selection strategy, respectively. The Pareto-based evolutionary algo-

ithm has been applied to various areas including the combinatorial
ptimization problem. Song et al. [33] proposed a multi-objective
ptimization for the SRSP based on the STK simulation. Li et al. [34]
roposed an improved genetic algorithm by using site coding for SRSP.
u et al. [35] proposed a general multi-objective optimization evolu-

ionary algorithms (MOEA) based memetic algorithm framework for
ulti-objective SRSP. Song et al. [36] proposed an improved genetic

lgorithm with the neighborhood search for SRSP. In [33–36], they
se a population-based evolutionary algorithm to optimize the SRSP for
btaining a set of solutions. The research mainly designs some variation
perators (e.g., crossover and mutation) to reproduce new represen-
ations. Zhang et al. [37] proposed a two-stage update pheromone
CO algorithm to solve the satellite resource scheduling problem. Peng
t al. [30] considered a remote satellite scheduling problem and solved
t by ACO. Zhang et al. [29] proposed an improved ACO with the
ounds, update, and initialization of pheromones to deal with the SRSP.
hai et al. [38] proposed a double ACO for scheduling the imaging and
he data transmission requests by designing an independent set model.

(3) 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠: Machine learning (ML) is one of the
ost salient techniques in many applications, and provides a powerful

ool for extracting useful and hidden patterns from a big dataset.
any ML-based meta-heuristics achieve high-quality results in solving

arious complex optimization problems. Research in applying ML to
olve combinatorial optimization problems has become increasingly
opular. ML can be divided into two categories: unsupervised learning
nd supervised learning. The most common ML tasks include classi-
ication, regression, and clustering. Classification and regression are
upervised ML task that needs a set of labeled data, while clustering
s unsupervised learning that does not require labeled data. In the
ombinatorial optimization community, it is difficult for us to find a
et of optimal solutions as labels for training a model. Hence, we often
se unsupervised learning, such as DRL, to deal with combinatorial
ptimization problems. DRL has been employed to address SRSP due
o the success of DRL in solving TSP [13], VRP [39,40]. Although the
raining of DRL needs to consume much time, obtained the trained
eural network model can directly provide high-quality solutions in
relatively short time. For example, Vinyals et al. [41] proposed a

ointer network model, which is a supervised learning model to solve
SP. Since the supervised learning model requires a large number of

abels, it was extended to DRL [13,42]. Li et al. [43] proposed a DRL
ethod integrating self-attention in both the encoder and decoder for
eterogeneous capacitated VRP. He et al. [44] proposed a finite Markov
ecision process model based on a constructive heuristic algorithm for
atellite scheduling problems. Wei et al. [45] proposed a deep rein-
orcement learning and parameter transfer-based approach for satellite
cheduling problem in a non-iterative manner. An encoder–decoder
tructure neural network is applied to the deep reinforcement learning

rocedure for producing a high-quality solution.
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Fig. 1. Illustration of SRSP.
3. Preliminaries

In this section, we mainly introduce the SRSP description, the
mathematical model of the SRSP, model process using the form of DRL.

3.1. Problem description

The SRSP refers to the process of satellite data reception and com-
mand annotation after the satellite and the ground station establish a
communication link when the satellite flies over the ground station.
During a period, the satellite orbits the earth to reach the ground station
multiple times to form various visibility time windows. The goal of
SRSP is to establish a satellite-to-ground station antenna connection
within a visible time window. The visible time windows need to be
assigned to different request tasks to satisfy the satellite requests. As
shown in Fig. 1, two satellites can connect with a ground station, but
a ground station antenna can only establish a connection with one
satellite at a time. Hence, the main goal of SRSP is to allocate visible
time windows to satellites reasonably.

3.2. Mathematical model

For the SRSP, a satellite mission consists of a set of 𝑇 𝑎𝑠𝑘𝑠 and a set
of 𝑇 𝑖𝑚𝑒𝑤𝑖𝑛𝑑𝑜𝑤𝑠, and then each task is allocated a visible 𝑇 𝑖𝑚𝑒𝑤𝑖𝑛𝑑𝑜𝑤.
𝐃𝐚𝐭𝐚 ∶

Let 𝐴 be the set of ground antennas. Let 𝑅 be the set of satellite
tasks. There are 𝑁 tasks in total. For each task 𝑟 ∈ 𝑅, it can be presented
by the tuple of (𝑝𝑟, 𝑜𝑟, 𝑎𝑟, 𝑏𝑟,𝑎, 𝑒𝑟,𝑎, 𝑠𝑟, 𝑡𝑟).

(a) 𝑝𝑟: the profit of task 𝑟 ∈ 𝑅; There is a bigger value of 𝑝𝑟 indicating
that the profit of task 𝑟 is higher.

(b) 𝑜𝑟: the service of task 𝑟 ∈ 𝑅; A task can perform different
services, such as tracking, uplink, reception and ranging session.

(c) 𝑎𝑟: the antennas supporting task 𝑟 ∈ 𝑅; A task can be supported
by several antennas.

(d) 𝑏𝑟,𝑎: the beginning time of the task 𝑟∈ 𝑅 on visibility window for
antennas 𝑎 ∈ 𝑎 .
3

𝑟

(e) 𝑒𝑟,𝑎: the ending time of visibility window on the request 𝑟 ∈ 𝑅
for antennas 𝑎 ∈ 𝑎𝑟.

(f) 𝑠𝑟: the service time of the task 𝑟 ∈ 𝑅.
(g) 𝑡𝑟: the turnaround time of the request 𝑟 ∈ 𝑅.

In addition, 𝑠𝑎 denotes that the antenna 𝑎 ∈ 𝐴 can support several
services. 𝐕𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬 ∶

Let 𝑥𝑟,𝑎 be 1 when request 𝑟 ∈ 𝑅 on antenna 𝑎 ∈ 𝐴 is scheduled,
otherwise 𝑥𝑟,𝑎=0.

Let 𝑦𝑟,𝑎 present the start time of request 𝑟 ∈ 𝑅 when the request 𝑟 is
performed in the antenna 𝑎 ∈ 𝑎𝑟. 𝐎𝐛𝐣𝐞𝐜𝐭𝐢𝐯𝐞 ∶

The SRSP requests not only the maximum number of scheduled
tasks but also the maximization of the profit of the scheduled task. In
practice, when a task 𝑖 ∈ 𝑅 on the antenna 𝑗 is scheduled, 𝑥𝑖𝑗 will be
set 1. Otherwise, it will be set 0. In order to optimize the problem, the
mathematical model is defined as follows:

𝐌𝐚𝐱
𝑁
∑

𝑖=1

𝑀
∑

𝑗=1
𝑥𝑖𝑗𝑝𝑖, (1)

where 𝑀 represents the number of antenna. 𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬 ∶
∑

𝑎∈𝑎𝑟

𝑥𝑟,𝑎 ≤ 1 (𝑟 ∈ 𝑅), (2)

𝑏𝑟,𝑎 ≤ 𝑦𝑟,𝑎 ≤ 𝑒𝑟,𝑎 (𝑟 ∈ 𝑅; 𝑎 ∈ 𝑎𝑟), (3)

𝑦𝑟,𝑎 + 𝑑𝑟 + 𝑡𝑟 ≤ 𝑦𝑞,𝑎 (𝑟, 𝑞 ∈ 𝑅), (4)

𝑠𝑟 ⊂ 𝑠𝑎 (𝑟 ∈ 𝑅; 𝑎 ∈ 𝐴), (5)

The constraint (2) indicates a task can be allocated to at most one
antenna. The constraint (3) indicates each task must be performed
within the available time windows at a ground station. The constraint
(4) indicates an antenna cannot overlap more than a request at the same
time. The constraint (5) indicates the antenna must support the service
of the task.

Furthermore, some assumptions need to be done for developing
analysis.
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Fig. 2. A schematic diagram of the satellite range scheduling.

1. The shift time of 𝑡𝑟 is a constant.
2. The task cannot stop once it is performed.
3. The time frame we plan is within the scope of the determination.

3.3. Modeling process

The process of solving the SRSP can be realized in two parts. First,
each task in all requests is allocated an antenna according to the
antenna’s support relationship. The process can be viewed as a task
assignment. Then, all tasks in each antenna are set to the visiting order
according to the beginning time of the task. By the two processes, tasks
can be determined based on the antenna being performed and its start
and end times. The diagram of scheduling SRSP is presented in Fig. 2.
Each satellite task is assigned to a specific antenna using the DRL-based
method. For the satellite missions on an antenna, the tasks are ranked
based on their profit values, and a scheduling plan can be obtained
by eliminating possible conflicts. The scheduling plan is introduced in
Section 4.4. For the process of the task assignment, we use DRL to
guide the selection. The DRL has been applied to many combinatorial
optimization problems, such as TSP [13] and VRP [43]. In this paper,
we model the process of the task assignment as a Markov decision
process (MDP) defined by 4-tuple 𝑀 = {𝑆, 𝐴, 𝜏, 𝑟 }. Importantly, the
state space 𝑆, the action space 𝐴, the state transition rule 𝜏, and the
reward function 𝑟 are introduced as follows:

𝑆𝑡𝑎𝑡𝑒 ∶ In our method, the state 𝑠𝑡 ∈ 𝑆 contains two different states,
which are the task state 𝑅𝑇𝑡, and the antenna 𝐴𝑛𝑡. For the antenna
state 𝐴𝑛𝑡, it describes the situation of antennas at the 𝑖th time step.
The state 𝐴𝑛𝑡 is expressed as 𝐴𝑛𝑡 = {𝑎𝑛1𝑡 , 𝑎𝑛2𝑡 , . . . , 𝑎𝑛𝑚𝑡 }= {(𝑜1𝑡 , 𝐺1

𝑡 ), (𝑜2𝑡 ,
𝐺2
𝑡 ), . . . , (𝑜𝑚𝑡 , 𝐺𝑚

𝑡 ) }, where 𝑜𝑖𝑡 represents the relationship of the antenna
to support request tasks and it does not change over time. 𝐺𝑖

𝑡 represents
the tasks to be visited by the antenna and it will change over time. The
task state 𝑅𝑇𝑡 is expressed as 𝑅𝑇𝑡 = {𝑅𝑇 1

𝑡 , 𝑅𝑇 2
𝑡 , . . . , 𝑅𝑇 𝑚

𝑡 } = {(𝑝1𝑡 , 𝑏1𝑡 , 𝑒1𝑡 ,
𝑠1𝑡 , 𝑡𝑎1𝑡 ), . . . , (𝑝𝑚𝑡 , 𝑏𝑚𝑡 , 𝑒𝑚𝑡 , 𝑠𝑚𝑡 , 𝑡𝑎𝑚𝑡 ) }, where 𝑝1𝑡 , 𝑏1𝑡 , 𝑒1𝑡 , 𝑠1𝑡 and 𝑡𝑎1𝑡 indicate
the profit, the beginning time, the ending time, the service time and
the turnaround time, respectively.

𝐴𝑐𝑡𝑖𝑜𝑛 ∶ The action in the method is to select a task and an antenna,
which can be regarded as selecting an antenna for a task. The action 𝑎𝑡
∈ 𝐴 is treated as (𝑟𝑖, 𝑎𝑛𝑗), that is the task 𝑟𝑖 will be assigned to the 𝑎𝑛 .
4

𝑡 𝑡 𝑗
Fig. 3. The illustration of the general framework.

𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ∶ By the transition rule 𝜏, the next state 𝑠𝑡+1 is obtained
based on the actions 𝑎𝑡 as well as previous state 𝑠𝑡, that is, 𝑠𝑡+1 = 𝜏(𝑠𝑡).
The state 𝑅𝑇𝑡+1 is updated as follows:

𝐺𝑘
𝑡+1 =

⎧

⎪

⎨

⎪

⎩

[

𝐺𝑘
𝑡 , 𝑟𝑡

𝑗] if 𝑘 = 𝑗,
[

𝐺𝑘
𝑡 , 𝑔

𝑗
𝑡

]

otherwise,
(6)

𝑅𝑒𝑤𝑎𝑟𝑑 ∶ The reward is used to compute the profit of tasks. The
maximum reward represents a better result. Then, the reward in steps
𝑡 and 𝑡 + 1 is defined as follows:

𝑟𝑡+1 = 𝑟(𝑠𝑡+1, 𝑎𝑡+1) = 𝑝𝑟𝑖, (7)

where 𝑝𝑟𝑖 is the profit of selecting the task 𝑖.

4. The proposed algorithm

In the section, we use the DRL-based method to assign tasks to
different antennas. We select an attention-based neural network for the
DRL to train the policy. Moreover, we introduce the training process
and a constructive heuristic algorithm.

4.1. General framework

The selected DRL-based method is to learn a stochastic policy
𝜋𝜃(𝑎𝑡|𝑠𝑡), which minimizes the loss objective. To do this, we use a
deep neural network to train the parameter 𝜃. First, the initial state
𝑠0 represents the initial stage where tasks will be assigned to the
antennas. Then, we use the 𝜋 to form a task assignment scheme until
the terminate state 𝜃𝜏 is satisfied. Thus, the probability chain rule is
calculated as follows:

𝑝(𝑠𝜏 |𝑠0) =
𝜏−1
∏

𝑡=0
𝜋𝜃(𝑎𝑡|𝑠𝑡)𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), (8)

where 𝜏 is the number of all steps.
In order to elaborate on the general framework, we provide a

simple example to illustrate the process in Fig. 3. First, the input
data, including tasks and antennas, is encoded into a feature space
for better representation with raw features in the first step (𝑡=0).
Its output is a vector that remains unchanged over time. Then, the
policy selects an antenna (𝑎𝑛𝑗) from all the antennas according to the
antenna decoder selection. Next, based on the antenna index identified
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by the antenna decoder selection, the policy selects the appropriate
tasks that the antenna can support via the task decoder selection. After
the mission assignment, we will do a mission scheduling for the mission
on that antenna. The constructive heuristic algorithm we chose for the
scheduling is presented in Section 4.4. Finally, the state 𝑠𝑡 is updated
based on the action 𝑎𝑡 constructed by the selected antenna 𝑎𝑛𝑗 and task
𝑟𝑖. By the way, we can determine the assignment scheme of all tasks on
which the tasks of an antenna are performed and generate a scheduling
plan for using users.

4.2. Architecture of policy network

We follow an encoder–decoder structure for the architecture, as
shown in Fig. 3. The structure includes an encoder and two decoders.
The encoder of our method uses a multi-decoder attention model [46]
composed of a task selection decoder and an antenna selection decoder.
Afterward, we are concerned with the detail of the encoder, task
selection decoder, and antenna selection decoder, respectively.

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 ∶ Since the features in the task need to be extended rational
and have broader characteristics. The encoder is used to enrich the
information for the antenna selection decoder. First, the features of
each task, that is, 𝑥𝑖 = (𝑜𝑖, 𝑝𝑖, 𝑏𝑖, 𝑒𝑖, 𝑠𝑖, 𝑡𝑖), are mapped into a higher-
dimensional space using a linear projection (𝑑ℎ = 128 in the paper).
Then, the Transformer-style model based on the multi-head attention
(MHA) mechanism and a feedforward (FF) sublayer is followed for
better feature extraction. By the way, the ℎ𝑖0 linearly projected by 𝑥𝑖

s encoded into ℎ𝑖𝑁 based on 𝑁 attention layers. In the paper, the
ulti-head attention layers are defined as follows:

𝑙,𝑦, 𝐾𝑙,𝑦, 𝑉𝑙,𝑦 = ℎ𝑙𝑊
𝑄
𝑙,𝑦, ℎ𝑙𝑊

𝐾
𝑙,𝑦 , ℎ𝑙𝑊

𝑉
𝑙,𝑦, (9)

𝑙,𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(𝑄𝑙,𝑦𝐾𝑇
𝑙,𝑦

√

𝑑𝑖𝑚𝑘

)

𝑉𝑙,𝑦, (10)

𝑀𝐻𝐴(ℎ𝑙) = 𝑀𝐻𝐴(ℎ𝑙𝑊
𝑄
𝑙 , ℎ𝑙𝑊

𝐾
𝑙 , ℎ𝑙𝑊

𝑉
𝑙 )

= 𝐶𝑜𝑛𝑐𝑎𝑡(𝑍𝑙,1, 𝑍𝑙,2,… , 𝑍𝑙,𝑌 )𝑊 𝑂
𝑙 ,

(11)

where ℎ𝑙 = (ℎ0𝑙 , ℎ
1
𝑙 , . . . , ℎ𝑛𝑙 ) is the 𝑑𝑖𝑚-dimensional embedding for the

task; 𝑊 𝑄
𝑙 , 𝑊 𝐾

𝑙 ∈ R𝑌 ×𝑑𝑖𝑚×𝑑𝑖𝑚𝑘 , 𝑊 𝑉
𝑙 ∈ R𝑌 ×𝑑𝑖𝑚×𝑑𝑖𝑚𝑣 and 𝑊 𝑂

𝑙 ∈ R𝑑𝑖𝑚×𝑑𝑖𝑚𝑘

re learnable parameters in layer 𝑙; 𝑑𝑖𝑚𝑘 = (𝑑𝑖𝑚∕𝑌 ) is the query/key
dimension and 𝑑𝑖𝑚𝑣 = (𝑑𝑖𝑚∕𝑌 ) is the value dimension; 𝑑𝑖𝑚 = 128 is the
dimension in a high-dimensional space; 𝑌 =8 is the number of heads in
the attention.

Then, the following embedding ℎ𝑙+1 is obtained by the two strate-
gies, which are consisted of the skip-connection and a batch normal-
ization (BN) layer. The core of the two strategies is defined as follows:

𝑟𝑖𝑙 = 𝐵𝑁(ℎ𝑖𝑙 +𝑀𝐻𝐴𝑖(ℎ𝑙)), (12)

ℎ𝑖(𝑙 + 1) = 𝐵𝑁(𝑟𝑖𝑙 + 𝐹𝐹 (𝑟𝑖𝑙)), (13)

𝐴𝑛𝑡𝑒𝑛𝑛𝑎 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 ∶ The role of the antenna selection
decoder is to select an antenna according to the probability distribution
implemented by two embeddings: antenna feature embedding and task
feature embedding.

First, the antenna features context 𝐶𝑉
𝑡 at step 𝑡 is defined as follows:

𝐶𝑉
𝑡 = [𝐺𝑡−1], (14)

where 𝐺𝑡−1 denotes the supporting tasks by the current antenna. To
fully extract the antenna feature context, it needs to be linearly pro-
jected with the parameters 𝑊1 and 𝑏1. Then it is integrated into the next
feature embedding 𝐻𝑡 by the 512-dim FF layer with the ReLU activation
function. The process is calculated as follows:

𝑉 𝑉
5

𝐻𝑡 = 𝐹𝐹 (𝑊1𝐶𝑡 + 𝑏1), (15) 1
Then, the task feature context 𝐶𝐸
𝑡 at time 𝑡 is defined as follows:

𝐶𝐸
𝑡 = [ℎ1𝑡 , ℎ

2
𝑡 ,… , ℎ𝑚𝑡 ], (16)

The feature needs to extract more context in a similar way as mentioned
above: the linear projection with trainable parameters 𝑊2 and 𝑏2 and
a 512-dim FF layer. The way can be calculated as follows:

𝐻𝐸
𝑡 = 𝐹𝐹 (𝑊2𝐶

𝐸
𝑡 + 𝑏2). (17)

Moreover, the two features, including the antenna feature embed-
ing 𝐻𝑉

𝑡 and task feature embedding 𝐶𝐸
𝑡 are merged into a new

eature that is linearly projected by the parameter 𝑊3 and 𝑏3. Then,
he probability of selecting the next antenna at time step 𝑡 is calculated
s follows:

𝑡 = 𝑊3[𝐻𝑉
𝑡 ,𝐻𝐸

𝑡 ] + 𝑏3, (18)

𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐻𝑡) (19)

here the softmax function is used to normalize 𝐻𝑡. Note that the
ethod of retrieving the maximum probability greedily selects the next

ntenna.
𝑇 𝑎𝑠𝑘 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 ∶ After selecting an antenna by the antenna

election decoder, the task selection decoder considers these tasks that
an be supported by the selected antenna. We aim to learn a probability
istribution 𝑝𝑡 to assign the corresponding task that is to be visited by

the antenna. First, we defined a feature context 𝐻𝑐
𝑡 composed of feature

vector ℎ̂𝑛 and current task embedding ℎ𝑖𝑡−1 as follows:

𝐻𝑐
𝑡 = [ℎ̂𝑁 , ℎ𝑖𝑡−1], (20)

where ℎ̂𝑁 = 1
𝑛
∑

𝑖∈𝑋 ℎ𝑖𝑁 . Then, the context 𝐻𝑐
𝑡 and the embedding

𝑁 are fed into an MHA layer. The MHA layer is similar to the one
entioned above for better feature extraction and is defined as follows:

̂ 𝑐
𝑡 = 𝑀𝐻𝐴(𝐻𝑐

𝑡 𝑊
𝑄
𝑐 , ℎ𝑁𝑊 𝐾

𝑐 , ℎ𝑁𝑊 𝑉
𝑐 ) (21)

here 𝑊 𝑄
𝑐 , 𝑊 𝐾

𝑐 and 𝑊 𝑉
𝑐 are training parameters. Then, we compute

he probability of all tasks at time 𝑡 as follows:

𝑡 = 𝐶 ⋅ 𝑡𝑎𝑛ℎ

(

𝑞𝑇𝑡 𝑘𝑡
√

𝑑𝑖𝑚𝑘

)

, (22)

where 𝑞𝑡 = �̂�𝑐
𝑡 𝑊

𝑄
𝑐𝑜𝑚𝑝 and 𝑘𝑡 = ℎ𝑁𝑊 𝐾

𝑐𝑜𝑚𝑝 are training parameters and
is set to 10. As a result, the probability of selecting a task for the

ntenna at time 𝑡 is calculated as follows:

𝑝𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑢𝑡) (23)

4.3. Training process

Algorithm 1 proposed Algorithm
Input:

initialized parameters 𝜃;
The set of positive samples for current batch, 𝑃𝑛;
The set of unlabeled samples for current batch, 𝑈𝑛;
Ensemble of classifiers on former batches, 𝐸𝑛−1;

1: for each 𝑖𝑡𝑒𝑟 = 1, 2, ... do
2: generate 𝑁 problem instances randomly;
3: for each 𝑖 = 1, 2, ...,𝑀 do
4: a batch 𝑏 = 𝑁𝑖
5: while not terminated do
6: select an action 𝑎𝑡,𝑏 ∼ 𝜋𝜃(𝑎𝑡,𝑏|𝑠𝑡,𝑏) ;
7: obtain a reward 𝑟𝑡,𝑏 and update next state 𝑠𝑡+1,𝑏;
8: end while
9: 𝑅𝑏 = ∑𝜏

𝑡=0 𝑟𝑡,𝑏;
0: GreedyRollout with baseline 𝑣 and compute its reward 𝑅𝐵𝐿;
𝜙 𝑏
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t
t

st
st
11: 𝑑𝜃 ← − 1
𝐵

∑𝐵
𝑏=1(𝑅𝑏 − 𝑅𝐵𝐿

𝑏 )∇ log 𝜋𝜃 (𝑠𝜏,𝑏|𝑠0,𝑏);
12: 𝜃 ← Adam(𝜃, 𝑑𝜃);
13: end for
14: if OneSidedPairedTTest(𝜋𝜃 , 𝑣𝜙) < 𝛼 then
15: 𝜙 ← 𝜃
16: end if
17: end for

The model is trained using the policy gradient method similar
o [43], as presented in Algorithm 1. Using the technique consists of
wo networks. First, a policy gradient network 𝜋𝜃 is used to select

an action and give the probability for the antennas and tasks; Then,
a baseline network 𝑣𝜙 is a greedy roll-out baseline, which evaluates
the reward by selecting the antenna and task with maximum prob-
ability. During the training, we randomly initialize some parameters
and generate 𝑁 problem instances. For each instance, we compute
the reward using the policy gradient in line 9. Moreover, 𝑅𝐵𝐿

𝑏 is an
expected reward conducted by a greedy roll-out of the baseline network
in line 10. In order to update the parameters of the baseline network,
a paired 𝑡-test on several instances is employed to verify the significant
differences between the two parameters in line 15.

4.4. Constructive heuristic algorithm

Once the tasks are assigned to the antennas, a heuristic algorithm
is needed to determine the order in which the tasks are performed on
the antennas, and to determine the start and end times of the tasks. In
the paper, we use an approach based on task profit sorting to deal with
a single antenna scheduling problem. The pseudo-code of the heuristic
algorithm is shown as Algorithm 2. The heuristic algorithm first sorts
all the tasks to be planned according to the task profit. This method
allows the tasks with the largest profit to be executed first, resulting
in a better profit. If the task satisfies the constraints, we choose the
earliest allowed start time for the task. Then, the task is then placed
into the planned set. With this heuristic algorithm, we can determine
the execution order and time window of the tasks.

Algorithm 2 heuristic algorithm
Input:

A sequence of tasks 𝑇 ;
Output:

𝑝𝑙𝑎𝑛;
1: Sort 𝑇 by the task profit in descending order.
2: for each task in 𝑇 do
3: if the task 𝑡𝑖 satisfy all constraints then
4: Schedule tasks on the earliest possible time window.
5: 𝑝𝑙𝑎𝑛 ← 𝑝𝑙𝑎𝑛 ∪ 𝑡𝑖.
6: end if
7: end for

5. Experimental design and analysis

The experimental scenarios in the paper follow a series of Chinese
satellites. Then, we use some algorithms to assess the performance of
the proposed method.

5.1. Test instance and satellite orbital parameters

We design some test problems with task sizes of 50, 100, 150, and
200. Each task scheduling period is 24 h. After pretreatment, each task
can be served on one or multiple antennas with one or more visible time
windows. All satellite tasks are randomly generated based on actual
conditions. In this way, the performance of the algorithm can be better
tested in combination with actual cases. For the task profit, we consider
using an integer to describe the importance of the task that the user
6

Table 1
Satellite orbital parameters.

Parameter LSA E I AP RAAN MA

Value 7141701.7 0.000627 98.5964 95.5069 342.307 125.2658

provides. In the scenarios, we use an integer ranging from 1 to 10 to
assign the profit value for each task.

The tasks in the experiment were all generated from low earth orbit
(LEO) satellites. The satellite orbit parameters include the length of the
semi-major axis (LSA), eccentricity (E), inclination (I), the argument
of perigee (AP), right ascension of the ascending node (RAAN), and
mean anomaly (MA). The initial orbital parameters for the satellite are
presented in Table 1.

In the experiment, the data for all satellite tasks were generated
based on ground station operational practices. In order to explain
in detail how to generate the test instance, we provide a procedure
referring to [5] as follows:

ep 1 Initialize the problem parameters.
ep 2 Generate 𝑛 satellite tasks one by one.

step 2–1 Set the turnaround time of the 𝑖th task to 10 min, 𝑡𝑟, and
randomly generate a number from 10 to 20 as the service
of 𝑟th task, 𝑠𝑟.

step 2–2 Randomly generate a number from 1 to 3 as the number
of visible antennas of the 𝑖th task, 𝑚𝑖. Randomly select 𝑚𝑖
visible antennas from 𝑚 antennas as the visible antennas of
𝑖th task.

step 2–3 Randomly generate 𝑚𝑟 integers in the interval [1, 1440
- 𝑡𝑟 - 𝑠𝑟] as the beginning time of visible time windows
between 𝑖th task and its visibility antennas. The ending time
of visibility windows can easily be determined by the start
time plus the service time.

step 2–4 Randomly generate an integer from 1 to 10 as the task
profit.

step 2–5 Return the Step 2–1 to generate the next task until all tasks
are completed.

5.2. Parameter settings and compared algorithm

First, the training instances are generated by random sampling,
and the size of each iteration is 12800, and 256 batches are set
for each iteration. In the experiment, we follow 30 iterations for all
problem sizes to verify the effectiveness of our method, although more
iterations can achieve better results. Then, the features of the tasks and
antennas are encoded into a 128-dimensional high-dimensional space,
and the dimension of the hidden layer is also set to 128-dimensional. In
addition, we select the Adam optimizer to train the policy parameters
with an initial learning rate 10−4 and decaying 0.995 per iteration for
convergence.

To verify the performance, we select five classical heuristic methods
for comparison algorithms, including (1) GA [34], a basic genetic
algorithm for combinatorial optimization problems; (2) LS [47], a
construction heuristic algorithm based on the local search for solving
SRSP; (3)tabu search (TS) [48], an efficient heuristic method for solving
the combinatorial optimization problem. (4)knowledge-based genetic
algorithm (KBGA) [49], a knowledge-based evolutionary algorithm for
relay satellite system mission scheduling problem. (5)IRICGA [50], an
individual reconfiguration based integer coding genetic algorithm for
multi-satellites imaging scheduling problem. Furthermore, we adjusted
the objectives and related settings of all contrasting algorithms so that
they share the same objective as the proposed ones.
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Fig. 4. Total reward of the first 30 episodes in different scenarios.

Table 2
CUP time spent on the training model and running.

Scenarios Training CUP time Run CUP time

task=50 37 h 29 min 40 s 4 min 29 s
task=100 130 h 52 min 2 s 14 min 16 s
task=150 275 h 52 min 53 s 30 min 26 s
task=200 520 h 37 min 37 s 52 min 22 s

5.3. Performance of applying DRL to SRSP

(1) 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠: In this section, we mainly analyze the
lgorithms’ performance on different task scales. First, we provide the
urve of total reward over the first 30 episodes in different scenarios in
ig. 4.

It can be seen from Fig. 4 that the DRL algorithm can obtain better
esults on different task scales after being trained, implying that it can
ave many advantages in dealing with SRSP. In the early stage, the
otal reward of each episode rises sharply, indicating that the proposed
lgorithm can quickly respond to different scenarios in a shorter period
f time. In the latter stages, the proposed algorithm can make use of
he training information to achieve good stability. There is a possible
eason for the result. The proposed DRL-based algorithm can deal
ith task allocation well, and a heuristic algorithm is used to find
etter solutions. The proposed DRL-based algorithm is integrated into
he heuristic algorithm to enhance its search ability. As a result, the
roposed algorithm can effectively deal with the SRSP.

(2) 𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑇 𝑖𝑚𝑒 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠: The section mainly discusses the train-
ng time of the model. Table 2 presents the training time and the
unning time obtained by the proposed DRL model in the different
cenarios. As shown in Table 2, the model training takes a lot of time
n different task scales. This means that the DRL-based method needs
o spend much time on the training of the model. At the same time, the
euristic algorithm in the DRL also consumes some time. However, af-
er model training, the algorithm can obtain a set of excellent solutions
n a short time. Therefore, although the model training takes more time,
scheduling scheme can be quickly obtained once the model training is

ompleted. In conclusion, it is acceptable to spend a lot of time training
he model to get a schedule quickly.

.4. Analysis of algorithm performance

This section investigates the efficiency of our DRL-based method
gainst other methods. We provide a comparative experiment about the
verage reward of the six algorithms, where the best values obtained by
ne of six algorithms are highlighted in bold face. It can be seen from
7

able 3 that the RDL-based algorithm outperforms other algorithms on
Table 3
The average reward of the six algorithms.

Scenarios DRL GA LS TS KBGA IRICGA

task=50 260.1 254.3 183 251.3 255.9 243.1
task=100 483.2 443.2 259.1 482.4 456.4 453.3
task=150 650.5 578.1 367.5 634.3 615.2 598.2
task=200 730.2 738.8 458.0 714.6 812.9 768.6

Table 4
Average Rankings of the algorithms (Friedman).

MIGD Average ranking value Final rank

DRL 1.7532 1
GA 3.9654 5
LS 5.8989 6
TS 3.7500 4
KBGA 2.5233 2
IRICGA 3.1010 3

the majority of the task scales. However, it performs slightly worse than
GA, KBGA, and IRICGA for task = 200. For all problems of all scales,
LS fails to show very promising performance. In addition, as the size
of the task increases, the performance difference between the proposed
algorithm and other algorithms is not significant. Clearly, there is only a
marginal difference between all algorithms. Furthermore, the proposed
DRL-based algorithm is slightly worse than other algorithms except for
LS, when the task is 200. One possible explanation is that the selected
heuristic method is not suitable for dealing with a single antenna
scheduling problem. This is understandable because the heuristics used
are relatively simple. Overall, the proposed DRL-based method has
more advantages in dealing with SRSP than other algorithms.

5.5. Study in the Friedman test

To verify the effectiveness of the proposed method, the Friedman
test [51,52] is used to investigate further significance between different
results at the 0.05 significance level. Table 4 presents the statistical
results of the Friedman test among the six algorithms under comparison
according to the profit value of the scheduled task. As shown in Table 4,
the proposed DRL-based algorithm ranks first in SRSP among the six
algorithms. The results of the Friedman test show that the proposed
DRL-based algorithm is a robust model in this scenario. Moreover,
the proposed DRL-based algorithm can produce more promising so-
lutions than other algorithms in the metric value obtained by the
Friedman test. This shows that the proposed DRL-based algorithm is
more efficient than other methods. In total, the RDL-based algorithm
significantly outperforms the other algorithms by a clear margin in
terms of the Friedman test. This means that the DRL-based algorithm
may be helpful for handling SRSP.

5.6. Discuss

5.6.1. Study of different task scale
To examine the effect of task scale on algorithms’ performance,

experiments are carried out on SRSP with different task scales, and
task scales are set to 75, 125, and 175, which present small, moderate,
and big scales, respectively. Experimental results of three algorithms in
different scenarios are presented in Fig. 5. It can be observed from Fig. 5
that the profit of the task increases with the size of the task. There is
a significant difference in the results between the three algorithms on
different task scales. When the task size is set to 175, the gap between
the algorithms is relatively small. The reason is that as the size of the
task increases, the number of related tasks increases. This can lead to
a high failure rate of the task in big-scale tasks.

Furthermore, we adopt another performance metric to investigate
algorithms’ performance on different task scales. The performance
metric is called the rate of total profit, which is proportional to the
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Fig. 5. Average reward of three algorithms in different scenarios.

Fig. 6. Profit rate of three algorithms under 75 task scale.

Fig. 7. Profit rate of three algorithms under 125 task scale.

total profit in the same task set. The rate of total profit is defined as
follows:

pr =
tpst
tptts

× 100%, (24)

where 𝑡𝑝𝑠𝑡 denotes the total profit of all scheduled tasks, and 𝑡𝑝𝑡𝑡𝑠
denotes total profit of all tasks in the task set.

The obtained results in three different scenarios about 𝑝𝑟 metric are
presented in Figs. 6, 7, 8. It can be seen from Fig. 6 that the rate of
total profit in the three algorithms is more than 90%. When the task
8

Fig. 8. Profit rate of three algorithms under 175 task scale.

Fig. 9. Average reward of six algorithms in different scenarios.

size increases, the rate of total profit in three algorithms decreases. In
addition, DRL significantly outperforms the other algorithms in terms
of the 𝑝𝑟 metric. However, the gap in the 𝑝𝑟 metric becomes smaller
when the task size increase. This means that all algorithms will face big
challenges with the task size growing. In inclusion, DRL seems suitable
for dealing with SRSP.

5.6.2. More discuss
In order to discuss the average reward of six algorithms in different

scenarios, we provide an average reward of six algorithms in different
scenarios in Fig. 9. It can be seen from Fig. 9 that the proposed DRL-
based algorithm performs significantly better than other algorithms
except for GA on the task = 200. Besides, the proposed DRL algorithm
shows some appealing results on small-scale instances, implying the
DRL-based method may be helpful for dealing with SRSP. However,
when the task size is 200, the DRL-based method does not show
promising results, and there is not much difference between them. This
means the DRL-based algorithm has not much advantage in dealing
with large-scale SRSP.

6. Conclusion

In the paper, we propose a deep reinforcement learning (DRL)
method to deal with SRSP. According to the framework of DRL-based,
the SRSP can be decomposed into two subproblems: the assignment
problem and the single antenna scheduling problem, respectively. The
proposed DRL-based algorithm solves the assignment problem, and the
heuristic algorithm deals with the single antenna scheduling problem.
It is concluded from the experimental comparison and analysis that the
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combination of DRL-based and the heuristic algorithm can effectively
deal with SRSP.

Although the DRL-based method produces encouraging performance
on SRSP, it needs to be examined in a broader of SRSP, including large-
scale instances. Therefore, our future work will mainly study large-scale
SRSP. In addition, we are considering using more machine learning
methods, including DQN and transfer learning for SRSP. The reason
is that the ML-based method can indeed improve the adaptability and
solution performance of the algorithm.

CRediT authorship contribution statement

Junwei Ou: Conceptualization, Methodology, Software, Writing –
riginal draft, Writing – review & editing. Lining Xing: Investiga-
ion, Funding acquisition. Feng Yao: Funding acquisition. Mengjun Li:
alidation, Formal analysis, Supervision. Jimin Lv: Project administra-

ion, Resources. Yongming He: Validation, Investigation. Yanjie Song:
nvestigation. Jian Wu: Investigation. Guoting Zhang: Data Curation.

eclaration of competing interest

No author associated with this paper has disclosed any potential or
ertinent conflicts which may be perceived to have impending conflict
ith this work. For full disclosure statements refer to https://doi.org/
0.1016/j.swevo.2023.101233.

ata availability

No data was used for the research described in the article.

cknowledgments

This work was supported in part by the National Natural Science
oundation of China under Grant 72271240, 72201273, 71901213;
n part by the Technical Field Foundation in 173 Program of Na-
ional Defense Technology, China under Grant 2021-JCJQ-JJ-0049; in
art by the Hunan Natural Science Foundation, China under Grant
022JJ30671; and in part by the Hunan Postgraduate Research Inno-
ation Project, China under Grand CX20220002.

eferences

[1] E. Escobar, M. Diaz, J.C. Zagal, Evolutionary design of a satellite thermal control
system: Real experiments for a CubeSat mission, Appl. Therm. Eng. 105 (2016)
490–500.

[2] J. García-Pintado, J.C. Neal, D.C. Mason, S.L. Dance, P.D. Bates, Schedul-
ing satellite-based SAR acquisition for sequential assimilation of water level
observations into flood modelling, J. Hydrol. 495 (2013) 252–266.

[3] S. Spangelo, J. Cutler, Optimization of single-satellite operational schedules
towards enhanced communication capacity, in: AIAA Guidance, Navigation, and
Control Conference, 2012, p. 4610.

[4] K.-J. Zhu, J.-F. Li, H.-X. Baoyin, Satellite scheduling considering maximum ob-
servation coverage time and minimum orbital transfer fuel cost, Acta Astronaut.
66 (1–2) (2010) 220–229.

[5] K. Luo, H. Wang, Y. Li, Q. Li, High-performance technique for satellite range
scheduling, Comput. Oper. Res. 85 (2017) 12–21.

[6] T.D. Gooley, Automating the Satellite Range Scheduling Process, Tech. Rep., Air
Force Inst of Tech Wright-Pattersonafb Oh School of Engineering, 1993.

[7] Z. Zheng, J. Guo, E. Gill, Swarm satellite mission scheduling & planning
using hybrid dynamic mutation genetic algorithm, Acta Astronaut. 137 (2017)
243–253.

[8] B. Wille, M.T. Wörle, C. Lenzen, VAMOS–verification of autonomous mission
planning on-board a spacecraft, IFAC Proc. Vol. 46 (19) (2013) 382–387.

[9] A.J. Vazquez, R.S. Erwin, On the tractability of satellite range scheduling, Optim.
Lett. 9 (2) (2015) 311–327.

[10] L. Barbulescu, J.-P. Watson, L.D. Whitley, A.E. Howe, Scheduling space–ground
communications for the air force satellite control network, J. Sched. 7 (1) (2004)
7–34.

[11] C.A. Rigo, L.O. Seman, E. Camponogara, E. Morsch Filho, E.A. Bezerra, P. Mu-
nari, A branch-and-price algorithm for nanosatellite task scheduling to improve
mission quality-of-service, European J. Oper. Res. (2022).
9

[12] X. Chu, Y. Chen, Y. Tan, An anytime branch and bound algorithm for agile
earth observation satellite onboard scheduling, Adv. Space Res. 60 (9) (2017)
2077–2090.

[13] I. Bello, H. Pham, Q.V. Le, M. Norouzi, S. Bengio, Neural combinatorial
optimization with reinforcement learning, 2016, arXiv preprint arXiv:1611.
09940.

[14] Y. Wei, M. Zhao, A reinforcement learning-based approach to dynamic job-shop
scheduling, Acta Automat. Sinica 31 (5) (2005) 765.

[15] W. Qin, Z. Zhuang, Z. Huang, H. Huang, A novel reinforcement learning-based
hyper-heuristic for heterogeneous vehicle routing problem, Comput. Ind. Eng.
156 (2021) 107252.

[16] N. Brown, B. Arguello, L. Nozick, N. Xu, A heuristic approach to satellite range
scheduling with bounds using Lagrangian relaxation, IEEE Syst. J. 12 (4) (2018)
3828–3836.

[17] L. Xin, W. Song, Z. Cao, J. Zhang, Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems, in: Proceedings of 35th AAAI
Conference on Artificial Intelligence, 2021, pp. 12042–12049.

[18] X. Chu, Y. Chen, L. Xing, A branch and bound algorithm for agile earth
observation satellite scheduling, Discrete Dyn. Nat. Soc. 2017 (2017).

[19] G. Beaumet, G. Verfaillie, M.-C. Charmeau, Feasibility of autonomous decision
making on board an agile earth-observing satellite, Comput. Intell. 27 (1) (2011)
123–139.

[20] N. Zufferey, M. Vasquez, A generalized consistent neighborhood search for
satellite range scheduling problems, RAIRO-Oper. Res. 49 (1) (2015) 99–121.

[21] Z. Liu, Z. Feng, Z. Ren, Route-reduction-based dynamic programming for
large-scale satellite range scheduling problem, Eng. Optim. 51 (11) (2019)
1944–1964.

[22] H. Ren-Jie, L. Ju-Fang, C. Ying-Wu, Satellite orbit task merging problem and its
dynamic programming algorithm, Syst. Eng. Electron. 31 (7) (2009) 1738–1742.

[23] L. Barbulescu, A. Howe, D. Whitley, AFSCN scheduling: How the problem and
solution have evolved, Math. Comput. Modelling 43 (9–10) (2006) 1023–1037.

[24] F. Marinelli, S. Nocella, F. Rossi, S. Smriglio, A Lagrangian heuristic for satellite
range scheduling with resource constraints, Comput. Oper. Res. 38 (11) (2011)
1572–1583.

[25] Y. Chen, Y. Song, Y. Du, M. Wang, R. Zong, C. Gong, A knowledge-based
scheduling method for multi-satellite range system, in: International Conference
on Knowledge Science, Engineering and Management, Springer, 2020, pp.
388–396.

[26] N. Zufferey, P. Amstutz, P. Giaccari, Graph colouring approaches for a satellite
range scheduling problem, J. Sched. 11 (4) (2008) 263–277.

[27] M. Chen, J. Wen, Y.-J. Song, L.-n. Xing, Y.-w. Chen, A population perturba-
tion and elimination strategy based genetic algorithm for multi-satellite TT&C
scheduling problem, Swarm Evol. Comput. 65 (2021) 100912.

[28] J. Zhang, L. Xing, An improved genetic algorithm for the integrated satellite
imaging and data transmission scheduling problem, Comput. Oper. Res. 139
(2022) 105626.

[29] Z. Zhang, F. Hu, N. Zhang, Ant colony algorithm for satellite control resource
scheduling problem, Appl. Intell. 48 (10) (2018) 3295–3305.

[30] P. Gao, Y.J. Tan, J.F. Li, R.J. He, An ant colony algorithm for remote satellite
and ground integration scheduling problem in parallel environment, in: Advanced
Materials Research, vol. 791, Trans Tech Publ, 2013, pp. 1341–1346.

[31] Y. Chen, D. Zhang, M. Zhou, H. Zou, Multi-satellite observation scheduling
algorithm based on hybrid genetic particle swarm optimization, in: Advances in
Information Technology and Industry Applications, Springer, 2012, pp. 441–448.

[32] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[33] Y.-J. Song, X. Ma, X.-J. Li, L.-N. Xing, P. Wang, Learning-guided nondomi-
nated sorting genetic algorithm II for multi-objective satellite range scheduling
problem, Swarm Evol. Comput. 49 (2019) 194–205.

[34] Y. Li, R. Wang, Y. Liu, M. Xu, Satellite range scheduling with the priority
constraint: An improved genetic algorithm using a station ID encoding method,
Chin. J. Aeronaut. 28 (3) (2015) 789–803.

[35] Y. Du, L. Xing, J. Zhang, Y. Chen, Y. He, MOEA based memetic algorithms
for multi-objective satellite range scheduling problem, Swarm Evol. Comput. 50
(2019) 100576.

[36] Y.-J. Song, Z.-S. Zhang, B.-Y. Song, Y.-W. Chen, Improved genetic algorithm
with local search for satellite range scheduling system and its application in
environmental monitoring, Sustain. Comput.: Inform. Syst. 21 (2019) 19–27.

[37] Z. Zhang, N. Zhang, Z. Feng, Multi-satellite control resource scheduling based
on ant colony optimization, Expert Syst. Appl. 41 (6) (2014) 2816–2823.

[38] W. Chai, C. Zhang, Double ant colony algorithm of multi-atellite mission planning
based on graph theory, Radio Eng. 49 (6) (2019) 534–539.

[39] X. Chen, Y. Tian, Learning to perform local rewriting for combinatorial
optimization, Adv. Neural Inf. Process. Syst. 32 (2019).

[40] J.M. Vera, A.G. Abad, Deep reinforcement learning for routing a heterogeneous
fleet of vehicles, in: 2019 IEEE Latin American Conference on Computational
Intelligence, LA-CCI, IEEE, 2019, pp. 1–6.

[41] O. Vinyals, M. Fortunato, N. Jaitly, Pointer networks, Adv. Neural Inf. Process.
Syst. 28 (2015).

[42] M. Nazari, A. Oroojlooy, L. Snyder, M. Takác, Reinforcement learning for solving
the vehicle routing problem, Adv. Neural Inf. Process. Syst. 31 (2018).

https://doi.org/10.1016/j.swevo.2023.101233
https://doi.org/10.1016/j.swevo.2023.101233
https://doi.org/10.1016/j.swevo.2023.101233
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb1
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb1
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb1
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb1
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb1
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb2
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb2
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb2
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb2
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb2
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb3
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb3
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb3
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb3
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb3
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb4
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb4
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb4
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb4
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb4
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb5
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb5
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb5
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb6
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb6
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb6
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb7
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb7
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb7
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb7
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb7
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb8
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb8
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb8
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb9
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb9
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb9
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb10
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb10
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb10
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb10
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb10
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb11
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb11
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb11
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb11
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb11
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb12
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb12
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb12
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb12
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb12
http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1611.09940
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb14
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb14
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb14
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb15
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb15
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb15
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb15
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb15
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb16
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb16
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb16
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb16
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb16
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb17
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb17
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb17
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb17
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb17
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb18
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb18
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb18
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb19
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb19
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb19
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb19
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb19
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb20
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb20
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb20
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb21
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb21
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb21
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb21
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb21
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb22
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb22
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb22
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb23
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb23
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb23
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb24
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb24
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb24
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb24
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb24
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb25
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb25
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb25
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb25
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb25
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb25
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb25
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb26
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb26
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb26
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb27
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb27
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb27
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb27
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb27
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb28
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb28
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb28
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb28
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb28
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb29
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb29
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb29
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb30
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb30
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb30
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb30
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb30
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb31
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb31
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb31
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb31
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb31
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb32
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb32
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb32
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb33
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb33
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb33
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb33
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb33
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb34
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb34
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb34
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb34
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb34
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb35
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb35
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb35
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb35
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb35
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb36
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb36
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb36
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb36
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb36
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb37
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb37
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb37
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb38
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb38
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb38
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb39
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb39
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb39
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb40
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb40
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb40
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb40
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb40
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb41
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb41
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb41
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb42
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb42
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb42


Swarm and Evolutionary Computation 77 (2023) 101233J. Ou et al.
[43] J. Li, Y. Ma, R. Gao, Z. Cao, A. Lim, W. Song, J. Zhang, Deep reinforcement
learning for solving the heterogeneous capacitated vehicle routing problem, IEEE
Trans. Cybern. (2021).

[44] Y. He, L. Xing, Y. Chen, W. Pedrycz, L. Wang, G. Wu, A generic Markov decision
process model and reinforcement learning method for scheduling agile earth
observation satellites, IEEE Trans. Syst., Man, Cybern.: Syst. (2020).

[45] L. Wei, Y. Chen, M. Chen, Y. Chen, Deep reinforcement learning and parameter
transfer based approach for the multi-objective agile earth observation satellite
scheduling problem, Appl. Soft Comput. 110 (2021) 107607.

[46] J. Li, L. Xin, Z. Cao, A. Lim, W. Song, J. Zhang, Heterogeneous attentions for
solving pickup and delivery problem via deep reinforcement learning, IEEE Trans.
Intell. Transp. Syst. 23 (3) (2021) 2306–2315.

[47] L. Barbulescu, A.E. Howe, J.-P. Watson, L.D. Whitley, Satellite range scheduling:
A comparison of genetic, heuristic and local search, in: International Conference
on Parallel Problem Solving from Nature, Springer, 2002, pp. 611–620.
10
[48] O. Bräysy, M. Gendreau, Tabu search heuristics for the vehicle routing problem
with time windows, Top 10 (2) (2002) 211–237.

[49] Y. Song, L. Xing, M. Wang, Y. Yi, W. Xiang, Z. Zhang, A knowledge-based
evolutionary algorithm for relay satellite system mission scheduling problem,
Comput. Ind. Eng. 150 (2020) 106830.

[50] E. Zhibo, R. Shi, L. Gan, H. Baoyin, J. Li, Multi-satellites imaging scheduling
using individual reconfiguration based integer coding genetic algorithm, Acta
Astronaut. 178 (2021) 645–657.

[51] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms, Swarm Evol. Comput. 1 (1) (2011) 3–18.

[52] E. Osaba, E. Villar-Rodriguez, J. Del Ser, A.J. Nebro, D. Molina, A. LaTorre, P.N.
Suganthan, C.A.C. Coello, F. Herrera, A tutorial on the design, experimentation
and application of metaheuristic algorithms to real-world optimization problems,
Swarm Evol. Comput. 64 (2021) 100888.

http://refhub.elsevier.com/S2210-6502(23)00007-X/sb43
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb43
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb43
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb43
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb43
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb44
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb44
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb44
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb44
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb44
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb45
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb45
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb45
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb45
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb45
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb46
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb46
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb46
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb46
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb46
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb47
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb47
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb47
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb47
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb47
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb48
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb48
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb48
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb49
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb49
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb49
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb49
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb49
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb50
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb50
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb50
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb50
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb50
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb51
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb51
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb51
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb51
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb51
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb52
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb52
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb52
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb52
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb52
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb52
http://refhub.elsevier.com/S2210-6502(23)00007-X/sb52

	Deep reinforcement learning method for satellite range scheduling problem
	Introduction
	Literature review
	Preliminaries
	Problem Description
	Mathematical model
	Modeling Process

	The proposed algorithm
	General Framework
	Architecture of policy network
	Training process
	Constructive heuristic algorithm

	Experimental design and analysis
	Test instance and satellite orbital parameters
	Parameter settings and compared algorithm
	Performance of applying DRL to SRSP
	Analysis of algorithm performance
	Study in the Friedman test
	Discuss
	Study of different task scale
	More discuss


	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


