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Abstract—Multitype satellite observation, including optical
observation satellites, synthetic aperture radar (SAR) satellites,
and electromagnetic satellites, has become an important direction
in integrated satellite applications due to its ability to cope with
various complex situations. In the multitype satellite observation
scheduling problem (MTSOSP), the constraints involved in differ-
ent types of satellites make the problem challenging. This article
proposes a mixed-integer programming model and a generalized
profit representation method in the model to effectively cope
with the situation of multiple types of satellite observations.
To obtain a suitable observation plan, a deep reinforcement
learning-based genetic algorithm (DRL-GA) is proposed by
combining the learning method and genetic algorithm. The DRL-
GA adopts a solution generation method to obtain the initial
population and assist with local search. In this method, a set of
statistical indicators that consider resource utilization and task
arrangement performance are regarded as states. By using deep
neural networks to estimate the Q value of each action, this
method can determine the preferred order of task scheduling.
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An individual update strategy and an elite strategy are used to
enhance the search performance of DRL-GA. Simulation results
verify that DRL-GA can effectively solve the MTSOSP and
outperforms the state-of-the-art algorithms in several aspects.
This work reveals the advantages of the proposed generalized
model and scheduling method, which exhibit good scalability for
various types of observation satellite scheduling problems.

Index Terms—Combinatorial optimization problem, deep
reinforcement learning (DRL), evolutionary algorithm (EA),
generalized model, multitype, satellite observation, scheduling.

I. INTRODUCTION

W ITHIN the last two decades, space technology has
undergone rapid advancement, with satellite observa-

tion, communication, and navigation becoming increasingly
familiar to the public [1]. Satellite observation refers to
the process of acquiring images or signal characteristics of
stationary or moving objects on the ground or at sea using
Earth observation satellites (EOSs) payloads. These satellites
have a broad range of applications in various fields, includ-
ing agriculture, meteorology, oceanography, and industry [2].
Among many techniques used in satellite observation, satellite
scheduling plays a crucial role. The plans obtained through
satellite scheduling enable the rational and efficient use of
satellite resources while meeting the needs of users as much
as possible. However, the increasing demand and complexity
of the environment pose significant challenges to satellite
observation [3].

Optical observation satellites, synthetic aperture radar
(SAR) satellites, and electromagnetic (EM) satellites are the
three commonly used observation satellites [4]. Each type of
satellite has its specific uses and difficulties in performing
tasks in various situations [5]. Therefore, investigating how to
effectively use EOSs and develop a reasonable plan for the
three types of satellites is necessary. The core element of the
observation plan is determining the satellites and times for
executing each task that can obtain high profits. Unlike other
combinatorial optimization problems, satellites have a fixed
orbit and are only observable when passing over the task area.
This time range over which the task can be observed is referred
to as the visible time window (VTW) [6]. Therefore, the
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multitype satellite observation scheduling problem (MTSOSP)
involves selecting the appropriate tasks for the three types
of EOSs and completing tasks within their corresponding
VTWs.

The optical detection satellite scheduling problem has
been extensively studied in previous works [7], [8], whereas
scheduling problems for the other two types of satellites are
relatively rare. There are no relevant studies on MTSOSP in
the existing literature. The use of multiple types of satellites
for observation missions has obvious advantages. In particular,
multitype satellite observation can complement each other to
overcome the influence of various factors, such as weather,
clutter, and equipment capacity, and ensure the successful
completion of observation tasks [9]. Nevertheless, developing
an effective plan for multitype satellite observation tasks
presents new challenges. Existing models that consider only
one type of satellite are no longer applicable. Therefore, a
new model and algorithm need to be proposed to solve the
MTSOSP effectively. The research in this article will provide
modeling and methodological support for multitype satellite
observation scheduling.

Several evolutionary algorithms (EAs), such as genetic
algorithm [10], ant colony algorithm [11], particle swarm
optimization algorithm [12], and memetic algorithm [13], have
been applied to solving EOS scheduling problems (EOSSP),
providing effective planning for the presented scenarios in the
studies. A genetic algorithm is popular among these algorithms
for its simple structure and outstanding performance [14].
However, EAs, such as genetic algorithms, cannot guarantee
to find high-quality solutions due to the mechanism of random
search [15], [16]. In addition, the performance of the algorithm
also suffers from the lack of exploitation capability. In the
complex MTSOSP studied in our work, solution effectiveness
and efficiency are crucial factors to consider in algorithm
design. Therefore, we propose a deep reinforcement learning-
based genetic algorithm (DRL-GA) for solving the MTSOSP.
DRL-GA combines the respective advantages of deep rein-
forcement learning (DRL) methods and genetic algorithms. A
Markov decision process is constructed based on task feature
information to generate initial solutions for population search
and neighborhood search. During the population search pro-
cess, the algorithm uses an elite strategy to enhance the search
speed. When the population search reaches predetermined
conditions, a fast local search method is employed to find
higher-quality solutions. The contributions of this study are as
follows.

1) We construct a generalized mathematical model that
represents the observation profits of optical, SAR, and
EM satellites in a generalized form, accounting for
external and internal induced influences. This profit
representation method realizes the unification of the
profit evaluation standard of each type of satellite. The
type judgment function used in the model can effectively
reduce the workload of constraint judgment. This mixed-
integer planning model is an extension of the single-type
EOS scheduling model. It can be applied not only to the
MTSOSP but also to other EOSSP problems with some
modifications.

2) A genetic algorithm based on DRL is proposed, which
generates solutions using a DRL method. The initial
solution is obtained heuristically using the DRL method
before running the population iterative search. This
DRL method can choose tasks continuously to form
chromosomes based on the state. In the local search
stage, a DRL-assisted heuristic task insertion method is
used to quickly generate a new neighborhood structure.
An elite strategy is also adopted to speed up the
population search. The idea of utilizing DRL to enhance
the performance of GA’s global and local search can be
applied to other studies on DRL-assisted EA on solving
combinatorial optimization problems.

3) Our proposed DRL-GA outperforms several state-of-the-
art algorithms and can effectively solve the MTSOSP at
different task scales. The simulation results demonstrate
that DRL-GA has superior performance in terms of
profit, convergence speed, and solution time compared
to other advanced algorithms.

The remainder of this article is organized as follows. In
Section II, we provide a review of related work on EOSSP
and methods of combining DRL with EA. In Section III, we
introduce a multitype satellite observation scheduling model.
In Section IV, we present the solution generation method
and the DRL-GA algorithm. In Section V, we present the
simulation results of the proposed algorithm and compare
it with state-of-the-art algorithms. Finally, we conclude our
work.

II. RELATED WORK

A. Earth Observation Satellite Scheduling Problem

The EOS scheduling problem has received substantial
attention due to its various applications in areas, such as
commercial spaceflight and satellite Internet. Depending on the
type of problem, it can be subdivided into the EOS schedul-
ing problem (EOSSP), satellite measurement and control
scheduling problem (SRSP), satellite data downlink schedul-
ing problem, and satellite interplanetary routing scheduling
problem. Wolfe and Sorensen [17] were among the first to use
optimization models to describe the EOS scheduling problem.
Later studies proved that EOSSP is NP-hard and has no poly-
nomial time algorithm [18]. In these studies, mixed-integer
models, quadratic models, and constraint satisfaction problem
models have since been developed [19], [20], [21]. These
models consider various factors that affect the accomplishment
of the task of optical observation satellites, such as cloud cover
and illumination.

While various models have been proposed for the EOS
scheduling problem, various types of solution algorithms
have also emerged. These algorithms can be classified as
exact algorithms, heuristic algorithms, EAs, reinforcement
learning algorithms, and others. Exact algorithms can obtain
optimal solutions when the problem size is small, but their
solution time exponentially increases as the problem size
grows. Therefore, exact algorithms are typically used only
for problems in specific scenarios and are not considered
practical for larger-sized problems. Heuristic algorithms and
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EAs, including metaheuristics, are commonly used in practical
engineering applications [22]. Fatos et al. [14] showed that
the genetic algorithm outperformed other search algorithms
in solving the EOS scheduling problem. Xu et al. [23] used
an improved genetic algorithm (IGA) to solve the large area
observation scheduling problem, specifically designed for the
EOSSP.

Incorporating local search with EAs is another way to
improve the performance of the algorithm search and achieve
better results. Due to the high complexity and large solution
space of EOSSP, local search methods can help the solution
algorithm to search for local optima in the local space.
Chang et al. [24] proposed a memetic algorithm to solve the
EOS scheduling problem, which uses neighborhood structure
destruction and repair to generate new solutions during local
search. Wei et al. [25] proposed a multiobjective memetic
algorithm framework to obtain a high-quality agile EOS
observation plan to minimize task failure and load balancing.

B. DRL Combining With EA for Solving Combinatorial
Optimization Problem

Reinforcement learning methods use an agent (or
multiagents) to interact with the environment and find
the optimal solution by learning. Compared to tradi-
tional optimization methods, DRL has become an important
approach for solving combinatorial optimization problems.
The pointer networks has played a significant role in
promoting DRL for solving combinatorial optimization prob-
lems [26]. However, solving combinatorial optimization
problems using reinforcement learning methods alone requires
a lot of effort in model training to achieve results that exceed
or are close to those produced by heuristic and EAs [27].
Recent studies [28], [29] have explored the combination of
reinforcement learning with EAs. In such approaches, sev-
eral aspects of EAs, such as individual selection, parameter
control, and population evolutionary operations, are assisted
by DRL methods. Tian et al. [28] attempted to allow the
agent to provide decisions for the multiobjective optimization
algorithm to select the operation operator. Du et al. [29] com-
bined DRL methods with distribution estimation algorithms to
find solutions for the multiobjective hybrid shop scheduling
problem. The agent’s actions were various neighborhood-
improving heuristics rules.

III. MATHEMATICAL MODEL

A. Problem Description

The MTSOSP aims to develop a task execution plan for
each Optical EOS, SAR EOS, and EM EOS that includes
the execution sequence and timing. The scheduling problem
includes multiple tasks, with varying degrees of urgency
or importance, which are reflected in the task timeliness
constraint. A task is considered valid only if it meets the user’s
timeliness requirements, i.e., if it has started and completed
within the required time frame. Only satellites that fly over the
task area have the potential to execute tasks. Furthermore, the
satellite must execute its task within the VTW’s range where
the task can be observed.

Each satellite requires energy to capture images and store
them in satellite memory, which has limited capacity and
cannot be replenished in real-time. Therefore, a reasonable
task execution plan is required under the condition of limited
resource capacity to ensure the full utilization of satellite
resources. After completing an observation task, the satellite
cannot immediately perform the next task but needs to go
through a certain conversion time. Furthermore, the three
types of satellites, Optical EOSs, SAR EOSs, and EM EOSs,
carry different working policies and modes of payloads, and
the working conditions to be satisfied by the payload work
are not the same. Optical EOSs are affected by clouds and
light [1], [30], while SAR EOSs and EM EOSs are sensitive
to EM signals [9], [31], [32]. These factors are ultimately
reflected in the quality of the images captured. Regardless
of the type of satellite, a satellite observation is considered
successful only when the image quality requirements of the
user are met.

The goal of scheduling is to find a sequence of tasks that
maximizes the observational profit, which is closely related to
the degree of importance of the task.

B. Variables and Symbols

Parameters and decision variables are shown in Table I.

C. Model

Due to the various factors that can affect the flight and task
of the satellite, some of which do not need to be considered
within the scope of the model, the following assumptions are
made. Based on assumptions made in [21], [33], and [34],
several specific assumptions for MTSOSP are given as
follows.

Assumption:
1) Observation tasks are preprocessed to cover the entire

task area in a single observation [33].
2) Satellite energy and memory can be restored to

their initial state at the beginning of each orbital
flight [34].

3) Each task can be executed at most once and does not
need to be repeated [21].

4) A task can be successfully scheduled and then executed
without being affected by other factors that could cause
failure [21].

5) The task and its specific execution requirements are
defined before scheduling starts, and no new tasks or
temporary cancellations occur [21].

6) Each satellite can execute an observation task at any
moment [34].

The diverse measure used to assess the observational profits
of different satellite types pose challenges in comparing the
advantages and disadvantages of executing the same task
with varying satellites. To achieve the evaluation of different
satellite types profits on the same measure, we propose a gen-
eralized method for observational profits representation. This
method serves as a premise for proposing the MTSOSP model.
This method involves categorizing factors that impact different
types of satellites. These factors are relatively independent
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TABLE I
VARIABLES AND SYMBOLS

and are computed using a standardized formula to derive
the actual observation profits under a consistent measure.
Specifically, factors affecting the observation profit of satellites
are divided into two categories: external environmental factors
(mainly including factors related to cloud cover [35], EM
environment [32], etc.) and internal factors (mainly, including
the factors related to observation satellites [36], tasks [7],
etc.). Both external environmental factors and internal factors
will have an impact on the observation profit. The original
observation profit of an observation task, taskj, is denoted by
oproj, which is also the maximum observation profit obtained
in the best case. Then, we can calculate the actual observation
profit, aproijk, for each type of satellite, sati, by combining the
maximum observation profit with the external environmental
factors and internal factors. The equation for calculating the

actual observation profit is shown

pijk = oproj × OIijk × IIijk (1)

where oproj denotes maximum observation profit for task taskj,
OIijk denotes the influence of external environmental factors,
IIijk denotes the influence of internal factors, OIijk and IIijk

and both in the range of [0, 1].
The actual observation profit depends on the satellite

resources and the time interval in which the task is executed.
The effect of external environmental factors can be expressed
as follows:

OIijk =
NOI∏

l=1

[
1− oil

(
sati, taskj, twk

)]
(2)

where oil(·) denotes the function affected by external envi-
ronmental factors when the satellite sati performs the task
taskj, and NOI denotes the number of satellites of each type
affected by external environmental factors. A smaller value
of oil(sati, taskj, twk) indicates a smaller influence of this
factor. When the task is not affected by external environmental
factors, the value of the corresponding function term is 0.

Similarly, the effect of internal factors can be expressed as
follows:

IIijk =
NII∏

l=1

[
1− iil

(
sati, taskj, twk

)]
(3)

where iil(·) denotes the lth internal factor influence func-
tion expression, and NII denotes the number of satellites of
each type influenced by internal factors. A smaller value of
iil(sati, taskj, twk) indicates a smaller influence by the factor,
and the opposite is true for a larger influence. When the
observation task is not affected by the lth internal factor, the
value of the corresponding function term is 0.

By using the observation profit generalized description
method, the task profits belonging to different types of
satellite execution tasks can be transformed into the same
determination criteria. After completing the representation of
the observation task profit in a generalized form, the objective
function can be consistently constructed. The goal of our
optimization is to find a task sequence that maximizes the
observation profit, i.e., maximizes the observation profit. The
objective function for the MTSOSP can be expressed as
follows:

Objective Function:

max
∑

i∈Sat

∑

j∈T

∑

k∈TW

∑

o∈Oi

pijk · xijko (4)

where pijk denotes the profit and xijko denotes whether the
satellite i executes the task j in the time window k of the
orbit o.

There are numerous constraints for each type of satellite.
Determining whether or not these constraints are satisfied can
result in task scheduling that takes a lot of time. Therefore, it
is necessary to propose a satellite type-task judgment function
to simplify the workload of constraint judgment. The satellite
type-task type matching judgment function serves as the basis
for determining specific task requirements. When the satellite
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type does not match the type of task requirements, there is
no need to make further judgments on whether the satellite
satisfies the specific constraints. This can reduce the workload
of judging whether the constraints are satisfied to a certain
extent. Only when the satellite type matches the type of task
requirements, further judgments of more specific constraints
are made. The specific representation of the satellite type-task
type matching judgment function can be expressed as

Ctype
(

typei, rt
j

)
=

{
1, if both types are consistent
0, else.

(5)

For ease of representation, the results of the judgment
function can be abbreviated to the following form:

�← Ctype
(

typei, rt
j

)
. (6)

The type judgment function is swiftly screen potential
to execute a task, as many tasks have corresponding rela-
tionships with specific satellite types. In cases where the
type matching relationship is not satisfied, the model will
refrain from attempting to task arrangement. This approach
effectively reduces the workload involved in task schedul-
ing. Furthermore, the observation mode, bandwidth setting,
resolution setting, polarization mode, frequency band setting,
cloud amount, and EM environment influence can be checked
by the corresponding judgment function to determine if the
task execution requirements are met. If the requirements are
satisfied, the function return value is 1; otherwise, it is 0.

Based on the above judgment functions, it is easy to
determine whether the satellite can meet the requirements of
task execution. Next, we will provide the satellite capability
constraints that need to be satisfied for collaborative schedul-
ing in general. These constraints form a further extension
of constraints presented in the single type EOS observation
scheduling problem [37], [38]. The constraints in the model
are independent, which can be flexibly utilized according to
the specific problem. When a specific problem is to be solved,
some of the constraints can be added, modified, or discarded
flexibly as needed.

Constraints:

xijko ≤ � ∀i ∈ Sat, j ∈ T, k ∈ TW, o ∈ Oi (7)

� · xijko ≤ Cm
(

modei, rm
j ,�

)
∀i ∈ Sat, j ∈ T, k ∈ TW, o ∈ Oi (8)

� · xijko ≤ Cb
(

bandi, rb
j , �

)
∀i ∈ Sat, j ∈ T, k ∈ TW, o ∈ Oi (9)

� · xijko ≤ Cr
(

resi, rr
j ,�

)
∀i ∈ Sat, j ∈ T, k ∈ TW, o ∈ Oi (10)

� · xijko ≤ Cp
(

poli, r p
j ,�

)
∀i ∈ Sat, j ∈ T, k ∈ TW, o ∈ Oi (11)

� · xijko ≤ Cf
(

frei, rf
j ,�

)
∀i ∈ Sat, j ∈ T, k ∈ TW, o ∈ Oi (12)

� · xijko ≤ Cc
(
cloj, �

) ∀i ∈ Sat, j ∈ T, k ∈ TW, o ∈ Oi (13)

� · xijko ≤ Ce
(
envj,�

) ∀i ∈ Sat, j ∈ T, k ∈ TW, o ∈ Oi (14)
∑

j∈T\{j′}

∑

k∈TW

memj · xijok +memj′ · xij′ok′ ≤ Memi

∀i ∈ Sat, j ∈ T, o ∈ Oi, k, k′ ∈ TW (15)∑

j∈T\{j′}

∑

k∈TW

engj · xijok + engj′ · xij′ok′ ≤ Engi

∀i ∈ Sat, j ∈ T, o ∈ Oi, k, k′ ∈ TW (16)

stijo ≤ revtijko · xijko ∀i ∈ Sat, j ∈ T, k ∈ TW, o ∈ Oi (17)
(
stijo + dj

) · xijko ≤ rlvtijko ∀i ∈ Sat, j ∈ T, k ∈ TW, o ∈ Oi (18)

at
ij · xijko ≤ min

{
ϑi, amax

j

}
∀i ∈ Sat, j ∈ T

k ∈ TW, o ∈ Oi, t ∈ [
stijo, stijo + dj

]
(19)

(
stijo + dj

) · xijko + trijj′ ≤ stij′o + I · (1− xij′k′o
)

∀j �= j′, i ∈ Sat, j, j′ ∈ T, o ∈ Oi, k, k′ ∈ TW
(20)

∑

i∈Sat

∑

k∈TW

∑

o∈Oi

xijko ≤ 1 ∀i ∈ Sat, j ∈ T, k ∈ TW, o ∈ Oi (21)

xijko ∈ {0, 1} ∀i ∈ Sat, j ∈ T, k ∈ TW, o ∈ Oi (22)

stijo ∈ Z∗ ∀i ∈ Sat, j ∈ T, k ∈ TW, o ∈ Oi. (23)

Equation (7) indicates that the satellite needs to be consis-
tent with the type required by the task. Equation (8) indicates
that the observation mode used by the satellite needs to
be the same as the observation mode required by the task.
Equation (9) indicates that the bandwidth used needs to be
the same as the bandwidth setting required by the task.
Equation (10) indicates that the resolution used needs to be
guaranteed to be the same as the resolution setting required
by the task. Equation (11) indicates that the polarization
method used needs to be the same as the one required by
the task. Equation (12) indicates that the frequency used
needs to be the same as the frequency setting required by
the task. Equation (13) indicates that the satellite executes
tasks that cannot be affected by cloud cover. Equation (14)
indicates that the satellite executes tasks that cannot be affected
by the EM environment. Equation (15) indicates that the
satellite cannot exceed the upper limit of the satellite’s memory
capacity for each orbit in which it flies to complete its task.
Equation (16) indicates that the satellite cannot exceed the
upper limit of satellite power in each orbit to complete its
task. Equations (17) and (18) indicate that each task needs
to be executed within a time window that can be detected.
Equation (19) indicates that the observation angle to the
task needs to be less than the maximum allowable angle.
Equation (20) indicates that the interval time requirement
needs to be satisfied for the transition between two tasks.
Equation (21) indicates that each task can be executed at most
once. Equations (22) and (23) indicate the value range of
decision variables.

IV. DEEP REINFORCEMENT LEARNING-BASED

GENETIC ALGORITHM

A. Framework

To address the MTSOSP, we propose the DRL-GA, which
uses DRL methods to generate solutions for population search
and local search. The overall framework of the algorithm is
shown in Fig. 1. The genetic algorithm that successfully solves
multiple satellite scheduling problems is very popular for its
simple structure and excellent exploration capability. These
metrics drive us to propose a DRL-GA for the observation
scheduling problem with multiple types of satellites. DRL-GA
involves four innovations.

1) A DRL-based initialization heuristic is proposed. The
DRL method constitutes individuals in the order of
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Fig. 1. Framework of DRL-GA.

preference for selecting a task based on a state consisting
of multiple statistical values.

2) An individual update mechanism is used to select indi-
viduals to generate offspring.

3) An elite individual retention strategy is embedded in the
algorithm framework. The best individuals within the
population are directly retained in the offspring during
the initial search stage to improve the search efficiency.

4) A fast local search method is proposed to enhance
the exploitation capability of the algorithm. This
local search method uses a DRL-assisted method to
select tasks quickly and construct a new neighborhood
structure.

The DRL-GA proposes a novel algorithmic design concept
for DRL, aiming to enhance the performance of both GA
population search and local search simultaneously.

B. Solution Generation Method Based on DRL

In our proposed algorithm, we utilize the DRL method
to generate the initial solution for the population search of
GA and obtain the task sequence used by the local search
to construct new neighborhood solutions. In previous studies,
various methods, such as random search, specific heuristic
rules, and machine learning, have been used to construct solu-
tions [39]. However, these methods can be too random or only
effective for certain scenarios or problems, leading to weak
generalization performance. In contrast, DRL is a method with
strong generalization ability and has been successfully applied
to a variety of combinatorial optimization problems. By using
DRL methods, we can effectively generate high-quality initial
solutions and improve the algorithm’s ability to find optimal
solutions. In the MTSOSP, the choice of which task to plan
is only related to the current state, satisfying the requirement
of no posteriority in the construction of the Markov decision
process. A Markov decision process can be composed of four
components 〈S, A, R, V〉, where S denotes the state, A stands
for the action, R is the reward, and V denotes the value
function. The state represents the situation of the agent itself

Algorithm 1: Solution Generation Method Based on DRL
Input: task set T , population size Np, Dueling DQN, εg
Output: population P0

1 for i = 1 to Np do
2 if rand() ≥ εg then
3 while termination criterion is not met do
4 at ←Choose action by Dueling DQN(St, A);
5 task←Select the task according to Action

Selection Method (T, at);
6 Omit task from T;
7 indii ←Add task into individual i;
8 Rt ←Calculate Reward;
9 St+1 ←Update State;

10 Relay Buffer←Record state transition;
11 t← t + 1;

12 else
13 indii ←Random generate an individual;
14 P0 ←Add indii into P0;

at time step t and is generally represented by a feature matrix.
The solution generation algorithm is presented in Algorithm 1,
which generates a sequence of tasks based on the current state
using the DRL method.

As shown in Algorithm 1, DRL or randomized method can
be used to generating individual chromosomes (Line 2–13).
When an individual generates a chromosome sequence using
DRL, the neural network obtains the Q-value for each action
strategy based on the input state (Line 4). The definitions of
states and actions are presented in Section IV-B1 and IV-B2,
respectively. Subsequently, an action selection method as
shown in Algorithm 2 will be used to select a strategy (Line
5). This strategy will sort the optional tasks and the task in
the top position will be used to generate the chromosome
sequence.

1) State: The state of an agent serves as the foundation
for calculating the Q value using deep neural networks and
selecting an action. The state space S is a sequence of states
St, defined as

S = {S0, S1, . . . , St, . . .} (24)

where St denotes the state of the agent at time step t. In our
approach, each state St is a composition of statistical indicators
with attribute values related to the scheduling results. These
indicators effectively describe the agent’s performance during
the construction of the solution to the MTSOSP. The attributes
constituting the state St are related as follows:

St = {RATt, RSTDt, RAPt, RAUPt} (25)

where RATt denotes the total time available for the remaining
time window, RSTDt denotes the standard deviation of the
average of the remaining tasks from the average of the profit
of all tasks, RAPt denotes the average profit of the remaining
tasks, and RAUPt denotes the average profit per unit time
of the remaining tasks. We calculate the total hours available
for the remaining time window, the standard deviation of the
average of the remaining tasks and the average of the profits
of all tasks, the average profit value of the remaining tasks,
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and the average profit value per unit time of the remaining
tasks using

RATt =
∑

i∈Sat

∑

j∈T

∑

k∈TW

∑

o∈Oi

(
rlvtijko − revtijko

)

−
∑

i∈Sat

∑

j∈STt

∑

k∈TW

∑

o∈Oi

dj · xijko (26)

RSTDt = 1

|RTt|
√ ∑

j∈RTt

(
oproj − oproave

)2 (27)

RAPt = 1

|RTt|
∑

j∈RTt

oproj (28)

RAUPt =
∑

j∈RTt

oproj

/
∑

j∈RTt

dj (29)

oproave = 1

|T|
∑

j∈T

oproj (30)

where RTt denotes the set of remaining tasks at the time step t.
2) Action: Action selection determines the preferred order

of task scheduling in the Markov model. The exact order
slightly differs between generating the initial solution for
population search and the initial solution for local search. One
action selection identifies a task to be planned and places it
after the previous action selection’s task. If applied to local
search, the selected task also needs to be rejoined to the
task sequence according to a certain strategy to obtain a new
neighborhood structure.

Our action selection strategy is based on heuristic rules,
and the corresponding task is selected from the optional
task sequence according to these rules. We use four action
strategies, which are as follows.

Profit-First Strategy: Select the observation task with the
highest profit in the remaining set of optional tasks RT .

Unit Time Profit-First Strategy: Select the observation task
with the highest unit time profit value in the remaining set of
optional tasks RT , and the task unit time profit is calculated
as upj = oproj/dj, where oproj denotes the task profit and dj

denotes the task requirement duration.
Time Urgency-First Strategy: Select the observation task

with the highest time urgency requirement among the remain-
ing set of optional tasks RT .

Duration-First Strategy: Select the observation task with the
shortest duration in the remaining set of optional tasks RT .

A balance between exploration and exploitation is necessary
for action selection. Exploration focuses on the DRL method’s
global search capability, while exploitation focuses on its
local search capability. Algorithm 2 shows the pseudocode
for action selection. In this algorithm, εc represents a control
parameter to determine whether the action selection is taken
in a greedy way (Line 3) or in a random way (Line 5).

3) Reward: The reward evaluates the agent’s performance
in taking action At in state St. In the MTSOSP, the agent
calculates the reward value obtained for each action choice
based on fitness improvement. Specifically, the rewards at time
step t are obtained by subtracting the fitness values at time step

Algorithm 2: Action Selection Method
Input: state St, Dueling DQN, action set A, εc
Output: action at

1 rand←Generate a random number between 0 and 1; if
rand ≥ εc then

2 At ←Choose the action with the largest Q value from A;
3 else
4 At ← Random choose an action from A;

t and time step t− 1. The equation for calculating rewards is

Rt = fitt − fitt−1 (31)

where fitt denotes the value of the fitness function at time
step t and fitt denotes the value of the fitness function at time
step t − 1. The adaptation function value is calculated by the
DTTWSA algorithm in [40] according to (4).

4) State Transition: When the agent takes an action At at
time step t according to state St, it will move to the next state
St+1. The subsequent action selection will be based on the
state St+1. Meanwhile, the quaternions of 〈St, At, Rt, St+1〉 are
recorded in the buffer.

5) Dueling DQN-Based Value Function: We use Dueling
deep Q network (DQN) to represent the value function.
Dueling DQN is a type of DQN that improves the data flow on
DQN by separating the state values from the rewards generated
by the actions. Compared with DQN networks, Dueling DQN
networks split the unidirectional data stream into two, which
are used to calculate the State Value Function and Advantage
Function, respectively. The calculation process is done by
the fully connected network. Finally, the estimated value of
Q for each action is obtained through a special aggregating
layer. The Q-value function in the Dueling DQN network is
represented by

Qπ (s, a) = Vπ (s)+ Aπ (s, a) (32)

where Vπ (s) denotes the state value and Aπ (s, a) denotes the
action advantage.

We use the improved form of the Dueling DQN network
proposed by Wang et al. [41]. This is a smoother calculation
that allows the dominance function to be guided by the correct
trend without pursuing the optimal case too much. The Q-value
function in the improved form is represented as shown in

Q(s, a; θ, θv, θa) = V(s; θ, θv)

+
(

A(s, a; θ, θa)− 1

|A|
∑

a′
A
(
s, a′; θ, θa

)
)

(33)

where θv and θa are the network parameters of the two fully
connected layers.

6) Dueling DQN Model Training: The neural network
model can effectively find the best solution after effective
learning. Dueling DQN network training adopts the same form
as DQN, which is a modified form of the DQN algorithm.
Dueling DQN network training has two main features. One
feature is the Replay Buffer mechanism, which belongs to the
Dueling DQN network model training. Dueling DQN records
the agent’s state transitions (St, At, Rt, St+1) and stores them
in the Experience Replay Pool. Another feature is that Dueling
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Fig. 2. Dueling DQN network training schematic.

Algorithm 3: Dueling DQN Training Method
Input: Relay Buffer, Dueling DQN, time step t, step interval

SI, Batch size Bs, γ
Output: Updated action-value function Q-Network θ

1 if mod(t, SI) == 0 then
2 Q̂←Copy the parameters of the Q network;
3 Sample a batch of state transition data from the Relay Buffer

randomly;

4 PV ← Q̂
(
φ′i, a′; θ̂

)
;

5 Calculate Y in Batch by Eq. (34)-(35);
6 Calculate the loss function by (Yi − Q(φi, Ai; θ))2 and use the

optimizer for gradient descent to optimize θ ;

DQN learning uses a target-value function network in addition
to the action-value function network. The network parameters
are obtained by copying the action-value function network
parameters at a fixed number of steps SI.

In Dueling DQN training, a mini-batch of state transition
data (Bs) is randomly sampled from the relay buffer. The
target value Y is computed by replicating the target-value
function network using the mini-batch. Then, the loss function
between Y and the result obtained by the action-value function
network is computed, and θ is optimized by gradient descent
using an optimizer. The schematic diagram of the Dueling
DQN network training is shown in Fig. 2. The equations for
calculating Y values during network training are shown in (34)
and (35).

If St+1 is not a termination state, Y is calculated as

Y = Rt + γ max(PV). (34)

If St+1 is the termination state, Y is calculated as

Y = Rt (35)

where Y denotes the predicted value of the target-value
network.

The training pseudocode for Dueling DQN is shown in
Algorithm 3.

Each training is done using a small batch sampling of state
transition data completed from the relay buffer (Line 4). The
Q-value is predicted based on the target network state value
(Line 5). Then, it is determined whether it is a termination
state and the corresponding Y-value calculation method is
used (Line 6). If the termination condition is not reached,
the Y-value is calculated according to (34). If the termination
condition is reached, the reward value Rt is directly assigned

to Y . After the Y-value is calculated, the parameter θ is
optimized by gradient descent using the optimizer (Line 7).

C. Population Evolution Strategy

1) Crossover: Crossover and mutation form the core parts
of DRL-GA. We use a double-point crossover to generate
offspring. Specifically, we select two positions from the
chromosome of an individual as the starting points of the
crossover fragments.

2) Mutation: Mutation generates a new individual by
selecting two genes at different positions in an individual
and swapping their positions. Compared to crossover, the
magnitude of variation can be smaller.

3) Individual Update: We propose an individual update
strategy to judge whether to update the previous individuals
in the population by evaluating the fitness value. If the
fitness function value has improved, the individuals will be
updated; otherwise, no updates will occur. However, such
a greedy strategy may produce detrimental effects on the
search. Therefore, we adopt the εu-greedy idea and introduce
a threshold εu. When an individual update is used, a random
number is generated, and when the random value is smaller
than εu, a new individual is added to the population regardless
of whether the fitness function value is improved or not.

4) Elite Strategy: To further accelerate the convergence of
the algorithm, we design an elite strategy in DRL-GA. The
elite strategy allows the individuals with the best performance
in the search process to be effectively retained and continue
to search for higher-quality solutions through evolutionary
operations in the next generation of populations. However,
although the elite strategy can improve the search efficiency of
the population to a certain extent, it is not very meaningful to
keep repeating such an operation when the population search
is bottlenecked. Therefore, we introduce a mechanism to judge
whether to adopt the elite strategy or not. A threshold Thre2 is
used to determine whether to continue using the elite strategy.
A new variable count2 records whether the contemporary
population search has found a higher quality solution. If not,
then the value of count2 is increased by one. When count2
equals the threshold Thre2, the elite strategy is no longer used.

5) Local Search: Local search can improve the search
effectiveness of algorithms, but it often requires sig-
nificant computational costs. In DRL-GA, we design a
low-computational cost local search algorithm by combining
the solutions generated by DRL. We use a DRL method and a
random task insertion method together to achieve a simple and
efficient neighborhood structure improvement. At each time
step t during the search process, the DRL method selects an
appropriate task based on the state St. Subsequently, the chosen
task will be inserted randomly. In this way, new solutions will
be continuously constructed.

Slightly different from the task selection for generating
the initial solution, the local search action selection chooses
the tasks to be reinserted into the sequence, and the new
neighborhood structure needs to be obtained by task insertion.
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Fig. 3. Example for encoding.

Algorithm 4: DRL-GA
Input: population size Np, α, β, task set T , time window set

TW, Dueling DQN, crossover operator Co, mutation
operator Mo, step interval SIc, crossover length L, max
generation Gen, Thre1, Thre2, εu

Output: Solution S
1 Set count1 = 0, count2 = 0;
2 Generate an initial population by Dueling DQN;
3 for gen = 1 to Gen do
4 for i=1 to Np do
5 if rand() ≤ α then
6 indi′i ←Crossover(indii, Co, α, L);

7 if rand() ≤ β then
8 indi′i ←Mutation(indii, Cm, β);

9 local_best, local_best_indi←Calculate population fitness
value;

10 if local_best > gobal_best then
11 gobal_best_ind← loc_best_indi;
12 gobal_best← loc_best;
13 count1 ← count1 + 1;
14 else
15 count2 ← count2 + 1;
16 if count1 == Thre1 then
17 Local search using DRL and insertion rules;
18 Reset count1 ← 0;
19 if count2 < Thre2 then
20 Use elite strategy;
21 Use individual update strategy when rand() < εu;

TABLE II
SATELLITE ORBIT PARAMETERS

D. DRL-GA

This section introduces the algorithm flow of DRL-GA,
which uses the integer encoding method. Each integer
represents the number of the task in the task set. Fig. 3 gives
an example of an integer code with six tasks to be scheduled.
Each gene position is a task, “6” denotes the sixth task in
the task sequence, “4” denotes the fourth task in the task
sequence, and so on. The fitness value is obtained according
to the objective function using (4), and individual selection is
done by roulette selection. The following section focuses on
the crossover, mutation, individual update, and elite strategies.
The pseudo-code of the genetic algorithm based on DRL is
shown in Algorithm 4.

In DRL-GA, the DRL method generates initial solutions
that are used in the population search and local search (Lines
3 and 26). After the population has evolved, a judgment is
made on whether to replace the optimal individual based on
the improvement of the fitness function value (Lines 10–15).
After one generation of population search is completed, the
algorithm decides whether to use the population perturbation

strategy (Line 32). Additionally, DRL-GA enters the local
search stage after a certain number of population searches
(Lines 25–28). To generate the satellite observation plan from
the DRL-GA population, a task arrangement algorithm in [40]
is used.

E. Complexity of DRL-GA

The time complexity of DRL-GA in the training mode is
O(Epoch ∗ Gen ∗ |T| ∗ |TW| + |T| ∗ |TW|) = O(Epoch ∗
Gen|T|∗|TW|). The time complexity of DRL-GA in test mode
is O(|T| ∗ |TW| + Gen ∗ Np ∗ (|T| ∗ |TW| + |T| ∗ |TW|)) =
O(Gen ∗Np ∗ |T| ∗ |TW|). The overall space complexity of the
DRL-GA is O(N).

V. SIMULATION STUDIES

The simulations reported in this article were conducted on a
desktop computer with a Core I7-7700 3.6 GHz CPU, 16 GB
of memory (DDR4 2400 MHz), and a Windows 11 operating
system, using Python 3.9.7. All algorithms were run under the
same system configuration.

A. Simulation Settings

Instance Setups: Since there is no public benchmark avail-
able for the MTSOSP, we generated a certain number of
instances with random tasks from around the world. To
distinguish between the different instances, we used an “A-
B” format, where A indicates the number of tasks in the
instance and B indicates the instance number. The information
of instances and the orbital parameters of one of the satellites
are shown in Tables II and III.

Comparison Algorithms: In our simulations, we com-
pared our proposed DRL-GA with a series of state-of-the-art
algorithms commonly used in EOSSP and other combi-
natorial optimization problems. The comparison algorithms
include the IGA [33], knowledge-based genetic algorithm
(KBGA) [42], dual-population artificial bee colony algorithm
(DPABC) [43], tabu-based adaptive large neighborhood search
algorithm (ALNS-TI) [34], and neighborhood search algorithm
(NS) [44]. The algorithm parameters are set as shown in
Table IV.

Evaluation Metrics: To ensure the fairness of the simulation,
we ran each algorithm 30 times. We evaluated the overall
performance of the algorithms using the best value (denoted
as Best) and the average value (denoted as Ave) of the
results. We also conducted the Wilcoxon rank sum test to
determine whether there was a significant difference between
the search results of different algorithms, at a significance level
of p = 0.05.

B. Results

First, the correctness of the generalized model was verified
by comparing it with a model from [34]. Table V shows the
scheduling performance of using the basic genetic algorithm
to solve the generalized model and the CPLEX solver to solve
the comparison model for 100 and 200 task scale scenarios.
The results indicate that the generalized model is correct and
can obtain a profit not inferior to the CPLEX solver.
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TABLE III
INFORMATION OF INSTANCES

TABLE IV
PARAMETERS OF ALGORITHMS

TABLE V
SCHEDULING PERFORMANCE OF BASIC GA AND CPLEX

SOLVER FOR SMALL-SCALE SCENARIOS

Fig. 4. Comparison on the standard deviation of algorithms.

Next, Table VI shows the scheduling performance of algo-
rithms evaluated in different scale instances. The results
demonstrate that the DRL-GA algorithm achieved the best
search performance in most of the scenarios, outperforming
other algorithms in terms of the average profit value and
standard deviation, as well as finding the maximum profit
value of the scenario. The performance gap between algo-
rithms tended to increase as the task scale increased, reflecting
the ability of DRL-GA to effectively balance exploration and
exploitation. Other compared algorithms may focus too much
on one aspect of exploration or exploitation, resulting in less
than optimal values of the fitness function for the obtained
solution. The Wilcoxon rank sum test results demonstrated
a significant difference between the proposed algorithm and
the other algorithms at the p = 0.05 level. Fig. 4 shows the
average standard deviation of the algorithms at different scales.
It can be seen that the standard deviation of all algorithms
shows an increasing trend as the task size increases. The
DRL-GA has a more stable performance in solving MTSOSP
compared with IGA, KBGA, DPABC, ALNS-TI, and NS.

Then, we also analyzed the convergence performance of the
algorithms, as shown in Fig. 5. The DRL-GA demonstrated

a fast convergence rate in scenarios with task scales of 600,
800, and 1000, and the algorithm could quickly find solutions
with high quality and continuously find solutions with higher
fitness function values by flexibly using multiple search
strategies.

Finally, the CPU time required for the algorithm runs are
compared, and the results are shown in Table VII. Since DRL-
GA uses the DRL method which consumes more system
computational resources compared to other simple strategies,
the algorithm time is slightly longer than the time of several
compared genetic algorithms. However, compared to other
search algorithms, the search time is shorter in most sce-
narios, with the shortest time for individual scenarios being
for NS.

Task completion is also an important factor for evaluating
the algorithm’s ability to solve the MTSOSP. Fig. 6 shows the
overall task completion rate, which demonstrates a decreasing
trend as the task size increases. This is because the satellite
capacity is limited and cannot complete all the tasks. DRL-GA
exhibited obvious advantages over other algorithms in terms
of task completion.

To verify the effectiveness of the strategies in DRL-GA,
we also conducted comparative simulations on the scheduling
effects by using DRL-GA without an elite strategy (denoted
as DRL-GA/W1) and DRL-GA without neighborhood search
(denoted as DRL-GA/W2). The results are shown in Fig. 7,
which indicate that DRL-GA with elite strategy and neighbor-
hood search can obtain higher scheduling profits compared to
DRL-GA with some strategies removed. Among the strategies
used by the algorithm, the enhanced search performance effect
exerted by the elite strategy is more obvious, which is highly
related to the complex structure of the MTSOSP solution
space.

C. Discussion

The simulation results demonstrate that DRL-GA has better
performance and convergence speed compared to the com-
parative state-of-the-art algorithm, which indicates that the
proposed algorithm can effectively solve the MTSOSP. The
excellent performance of DRL-GA in large-scale problems
reflects its ability to cope with actual scheduling scenarios. The

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 31,2024 at 03:43:15 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: GENERALIZED MODEL AND DRL-BASED EVOLUTIONARY METHOD 11

TABLE VI
BEST/AVE RESULTS OF RUNNING EACH ALGORITHM 30 TIMES

(a) (b) (c)

Fig. 5. Convergence Curves in 600, 800, and 1000 Task Scales of Scenarios. (a) 600 Task Scale. (b) 800 Task Scale. (c) 1000 Task Scale.

(a) (b) (c)

Fig. 6. Comparisons on task completion rate. (a) Results of each scenario numbered 1. (b) Results of each scenario numbered 2. (c) Results of each scenario
numbered 3.

(a) (b) (c)

Fig. 7. Results of algorithms with different improvement strategies. (a) 100–300 task scale. (b) 400–600 task scale. (c) 700–1000 task scale.

indicator-based state space design ensures that the DRL model
is highly generalizable and adaptable to different problem
scenarios. DRL-GA can more easily exploit the advantages
of GA population search than using DRL alone, and this

solution construction method is important for improving GA
performance.

DRL-GA presents an idea of combining the DRL method
with EA, and we chose the classical GA to fully exploit
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TABLE VII
CPU TIME OF EACH SCENARIO

the advantage of GA’s strong global search ability. The EA
combined with DRL can also choose other algorithms, such
as ant colony algorithm, particle swarm algorithm, etc. The
choice of the algorithm combination should be considered in
conjunction with the problem characteristics and EA search
process.

VI. CONCLUSION

Multitype satellite observations allow for the full exploita-
tion of the respective strengths of different types of satellites,
making the best use of resources while ensuring adequate
observational profits for the task. In this work, we innovatively
combined DRL and EA for solving the MTSOSP. We used a
method of generating initial and neighborhood search solutions
using the Dueling DQN model in the GA framework, which
effectively utilized the valid information in the problem to
obtain high-quality solutions quickly. The enhanced strategy
designed in the algorithm improved the algorithm’s search
performance while preventing it from falling into the local
optimum. The simulation results show that DRL-GA out-
performs the competitors in terms of solution profits and
task completion rates. In addition, the excellent performance
in large-scale scheduling scenarios demonstrates that DRL-
GA has a significant potential to be applied to real satellite
scheduling systems.

This work proposes a new approach to the MTSOSP. In the
future, this problem will be investigated in depth from several
perspectives. More complex situations require the study of
robust task scheduling problems or online scheduling problems
by considering the uncertainty of the observation task, equip-
ment, environment, etc. Other reinforcement learning methods
can also be applied to MTSOSPs. In addition, other forms of
combining reinforcement learning with EAs could be worth
exploring.
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