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A B S T R A C T

With the rapid development of the satellite industry, how to effectively manage satellites has become an
essential issue for ground operation management. By using the k-means clustering method, a cluster-based
genetic algorithm (C-BGA) is proposed for the satellite ranging scheduling problem (SRSP). In the C-BGA,
a heuristic-based population initialization strategy and a cluster-based evolution strategy are designed for
searching for an ideal solution. Four heuristic rules were used in the initial population generation process.
Population evolution process is accomplished by cluster-based crossover and mutation. These strategies also
improve the algorithm’s adaptability to cope with different scenarios. To increase the possibility of the task
being successfully scheduled, a task arrangement algorithm (TAA) is used to generate task execution plans.
Experiments are carried out to prove that the proposed algorithm can effectively solve the SRSP problem.
1. Introduction

With the rapid development of space technology in recent years,
the satellite is increasingly indispensable and has been implemented
in many fields [1]. Many of the satellites are used to complete mul-
tiple tasks such as observation, navigation, and communication [2].
Regardless of the type of tasks need to execute, satellite ground stations
deliver instructions through communication links to satellites directly
or indirectly (transmit to the relay satellite first). This process is called
satellite TT&C (telemetry, track, and command), which uploads action
instructions to satellites and obtains satellites’ operating status. The
satellite range scheduling system carries out effective management of
satellite and ground station resources by using high-efficiency schedul-
ing algorithms [3]. Therefore, effective task scheduling for the satellite
range scheduling problem (SRSP) is vital when numerous satellites need
to be managed.

Satellite range scheduling describes the process of arranging TT&C
tasks when satellites and satellite ground stations are visible to each
other. The mutually visible time range is called the visible time win-
dow (VTW). In other words, satellite range scheduling is simply the
process of determining the optimal combination of TT&C tasks for a
series of satellites and satellite ground stations within VTWs [4]. Our
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optimization goal is to find a reasonable satellite-ground station time
window scheme that maximizes the total profit.

The primary factors that hinder the SRSP problem are sequence
dependence and over-subscription [5]. Firstly, sequence dependency,
means the scheduling result of one task will affect other subsequent
tasks, making the plan lack regularity. Additionally, over-subscription,
means that even if the entire VTWs are used, a part of tasks still cannot
be successfully executed. The coexistence of these two characteristics
makes it almost impossible to find the optimal solution. Besides, the
complexity of SRSP has been proven to be NP-hard [6].

Evolutionary algorithms such as genetic algorithm, ant colony algo-
rithm, and particle swarm algorithm [7–9] have been widely used in
the satellite scheduling problem. Among them, the genetic algorithm,
as a classic evolutionary algorithm, has successfully solved many task
scheduling problems in practical applications [10]. Some accurate algo-
rithms have also successfully solved some satellite scheduling problems.
However, due to the difficulty of solving the problem, accurate algo-
rithms can only find optimal solutions for small-scale problems, and
the solution quality of large-scale problems is not ideal and stable [11].
Compared with accurate solving algorithms, the genetic algorithm is
more effective to solve scheduling problems in large-scale scenarios,
and it is not easy to occur exponential explosion [12].
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Some traditional evolutionary algorithms also tried to improve al-
gorithm performance from the perspective of data features, but these
are often based on assumptions or subjective inferences. These methods
are also effective for some cases with low data dimensions. As a
method that uses data features to complete classification or prediction,
machine learning methods are capable of learning data and processing
high-dimensional data. Therefore, combining machine learning meth-
ods with evolutionary computation is indeed an effective strategy for
solving combinatorial optimization problems. In this paper, a cluster-
based genetic algorithm (C-BGA) will be proposed to solve the SRSP
problem. Moreover, the K-means clustering method and genetic algo-
rithm are combined to improve search efficiency. Classification results
obtained by the K-means clustering method will assist the crossover
and mutation operations. This process allows information obtained
through machine learning to feedback on population evolution, and the
information transfer mechanism promotes algorithms to find a better
solution. It is meaningful to drive the algorithm optimization process
according to task characteristics.

The main contributions of this study are:
(1) A clustering classification strategy based on the characteristics of

SRSP is proposed. The clustering method divides task data into multiple
categories according to the tasks’ characteristics. The classification
results will guide the optimization process of the algorithm search.

(2) A cluster-based genetic algorithm is proposed to solve the SRSP
problem. The C-BGA combines a K-means clustering method and a
genetic algorithm. Heuristic population initialization strategy, cluster-
based crossover, cluster-based mutation, and other improved strategies
are used in the proposed algorithm.

(3) A task arrangement algorithm is proposed to generate plans. This
algorithm can quickly identify whether a task can be scheduled within
the visible time window. Tasks can be arranged in a heuristic way, and
time window resources will be updated accordingly.

The structure of this study is as follows. The second section intro-
duces the related work that has been carried out. The third section
introduces the SRSP mixed integer model. The fourth section intro-
duces the clustering-based genetic algorithm and a task arrangement
algorithm. The fifth part will design several experiments and compare
them with other competitive algorithms. The last part will introduce
research conclusions and future research directions.

2. Related work

Satellite range scheduling problems, as an important category of
satellite scheduling problems, along with satellite data download
scheduling problems and relay satellite scheduling problems, constitute
satellite support scheduling problems. The earliest representative re-
search is related to the AFIT network. Through comparison of multiple
algorithms, the genetic algorithm has achieved good performance
in solving SRSP problem [13]. Luo (2017) used a combination of
relaxation and heuristics to obtain high-performance solutions [14].
Zufferey (2008) combined the graph coloring approach and heuristics
to find good solutions by constructing feasible solutions [15]. Marinelli
(2011) introduced a time-indexed 0,1-linear programming formulation
and developed a Lagrangian version of the fix-and-relax MIP heuris-
tic [16]. Zhang (2014) designed a two-stage ant colony algorithm, and
several heuristic strategies are used to guide the search process of ant
colony [17]. The solution effect was studied, and the genetic algo-
rithm, iterative repair algorithm, and max–min ant system algorithm
were compared. Zhang (2018) tried to adopt a new model-building
method to reduce the workload of dispatchers [18]. Optimization of
the model makes a simple ant colony algorithm perform better than
other novel ACO algorithms. Song (2019) used a multi-objective opti-
mization method to solve the SRSP problem. Ensemble ideas are used
in the NSGA-II algorithm [19]. Deep reinforcement learning methods
also provide a new way of solving satellite scheduling problems. Ou
et al. (2023) proposed a deep reinforcement learning method for task
2

assignment [20]. This method has good performance in small-scale
instance scenarios.

Algorithms are the key to solving combinatorial optimization prob-
lems. Among the many types of algorithms, the genetic algorithm
has been widely used in combinatorial optimization problems and
solves satellite scheduling problems well. Parish (1994) tried to use
genetic algorithms and simple rules to dispatch satellite ground station
systems automatically [21]. Sun (2011) designed a genetic algorithm
implemented in Matlab and verified the effectiveness of solving the
SRSP problem through random instances [22]. Xhafa (2012) analyzed
the improvement of optimization effect when heuristic rules were
implemented in genetic algorithm [23]. This algorithm is combined
with an STK toolbox to improve the scheduling quality of the satellite
range scheduling system. A steady-state genetic algorithm is proposed
by Xhafa(2013) [24]. Replacement of some individuals in the pop-
ulation is also considered. This algorithm cannot achieve the same
optimization performance for the multi-objective SRSP problem. Kim
(2015) used a genetic algorithm to obtain SAR satellite constellation
operation plan [25]. System response time can be reduced by this
method. Zheng (2017) proposed a genetic algorithm with a dynamic
mutation strategy [26]. This algorithm is tested by multi-satellite and
multi-task scheduling problem. Results show its outstanding speed
and reliability. Song (2018) combined a genetic algorithm and neigh-
borhood search algorithm to find feasible solutions for satellite data
download scheduling problem [27]. Berger (2018) proposed a graph-
based genetic algorithm, which is a low-cost task scheduling heuristic
that was integrated into a genetic algorithm [28]. Barkaoui (2020)
combined good rules for solving vehicle route planning with the time
windows (VRPTW) problem with genetic algorithms to find plans for
satellite constellations [29]. The satellite range scheduling problem
can be regarded as a parallel machine scheduling problem, and the
genetic algorithm has been well applied in parallel machine scheduling
problems [30,31].

Other evolutionary algorithms such as the particle swarm algorithm
and firework algorithm were also used to solve the satellite scheduling
problem. Khojah et al. (2022) used a particle swarm algorithm to
solve the observation satellite scheduling problem and obtained high-
quality solutions by task prioritization [32]. The proposed algorithm
is mainly for problems with multiple optimization objectives, and the
fast convergence of the algorithm becomes critical when it is only a
single-objective optimization problem. Song et al. (2021) proposed a
dynamic population of fireworks algorithm to generate execution plans
for relay satellites [33]. The proposed algorithm is effective for solving
specific problem scenarios.

Clustering methods are mainly divided into partitional clustering
and hierarchical clustering, based on the properties of the generated
clusters [34,35]. Using clustering methods or other intelligent methods
to solve planning problems is showing a trend of development in
recent years. Several researchers have tried to use clustering methods
with heuristic algorithms, memetic algorithms, and hyper-heuristic
algorithms to solve several types of vehicle routing problems [36–
38]. In these algorithms, the clustering method measures the proximity
relationship between transportation destinations, which can quickly
classify transportation tasks to improve the quality of the solution.

To our best knowledge, the combination of the clustering method
and the evolutionary algorithm has not been used to solve the satellite
scheduling problem. Compared with using evolutionary algorithms
alone, clustering methods can effectively use data characteristics re-
quired for task scheduling and guide the optimization process. The
clustering method and genetic algorithm are combined in this study.
Some other strategies are adopted in the genetic algorithm to improve
search performance.

3. Scheduling model

In this section, a description of the problem will be given and a task
scheduling model for the SRSP problem will be proposed. Constraints

about tasks and resources are considered in the model.
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Table 1
Symbols and variables.

Notation Description

𝑇 Task set, 𝑇 =
{

𝑡𝑎𝑠𝑘1 , 𝑡𝑎𝑠𝑘2 , 𝑡𝑎𝑠𝑘3 ,… , 𝑡𝑎𝑠𝑘
|𝑇 |

}

𝐴𝑛𝑡 Antenna set, 𝐴𝑛𝑡 =
{

𝑎𝑛𝑡1 , 𝑎𝑛𝑡2 , 𝑎𝑛𝑡3 ,… , 𝑎𝑛𝑡
|𝐴|

}

𝐴𝑖 Available antenna set of task 𝑖
𝑇𝑊𝑖𝑗 Visible time window set of task 𝑖 on antenna 𝑗
𝑡𝑤𝑘

𝑖𝑗 𝑘th visible time window of task 𝑖 on antenna 𝑗
[

𝑡𝑤𝑠𝑘𝑖𝑗 , 𝑡𝑤𝑒𝑘𝑖𝑗
]

Start time and end time of visible time window
[

𝑒𝑠𝑡𝑖 , 𝑙𝑒𝑡𝑖
]

Earliest allowable start time and latest allowable end time of task 𝑖
[

𝑠𝑡𝑘𝑖𝑗 , 𝑒𝑡
𝑘
𝑖𝑗

]

Actual start time and end time of task 𝑖

𝑝𝑖 Profit of task 𝑖
𝛾 Conversion time between two tasks
𝑑𝑖 Required duration of task 𝑖
𝑎𝑐𝑡𝑘𝑖𝑗 Actual duration of task 𝑖
𝑀 A big integer
𝑥𝑘𝑖𝑗 If task 𝑖 is scheduled in the 𝑘th time window on the antenna 𝑗, 𝑥𝑘𝑖𝑗 = 1; otherwise, 𝑥𝑘𝑖𝑗 = 0
Fig. 1. Scenario diagram.

3.1. Symbols and variables

Variables and symbols involved in the model are given in Table 1.

3.2. Problem description

When man-made earth satellites orbit the earth, the ground satellite
control center needs to monitor the state of satellites and give com-
mands to satellites [39]. The scene of satellite control is shown in Fig. 1.
Satellite-ground station links are established between the two satellites
and the ground stations, while the other one cannot execute TT&C tasks
due to the lack of resources.

In the SRSP problem, there are multiple satellites, ground stations,
and tasks that need to be scheduled. A task is defined by multiple at-
tributes

{

𝑒𝑠𝑡𝑡, 𝑙𝑒𝑡𝑡, 𝑝𝑡, 𝑑𝑡
}

. Time-related characteristics of tasks are shown
in Fig. 2. These attributes limit time intervals within which tasks can
be executed [40]. A task needs to be executed in a VTW of the ground
station while satisfying its time attribute constraints. For example, there
are four TT&C tasks and four antennas. For task No. 1, antenna No. 1
and antenna No. 2 have VTWs. For task No. 2 and task No. 3, only
antenna No. 4 and antenna No. 2 have VTW, respectively. For task No.
4, all antennas have VTWs. The planning results are shown in Fig. 3,
where tasks No. 1–4 are assigned to antennas No. 1, No. 4, No. 2, and
No. 3, respectively. Tasks are executed within the time range and VTWs
required by the tasks.

It is obvious that obtaining a suitable solution requires a reason-
able mathematical model and an efficient solution algorithm, thus a
mixed-integer programming model is proposed.

3.3. Mathematical model of SRSP

The mathematical model is based on the following assumptions.
Assumptions:
3

Fig. 2. Time-related characteristics of task.

Fig. 3. Scheduling results for four tasks and four antennas.

1. An antenna can only serve one satellite at any moment;
2. A task can only be executed once at most;
3. No interruption will occur during the execution of tasks;
4. Task attributes are known in advance, and no temporary tasks

will appear;
5. Failure of execution due to electromagnetic, geographic, and

other factors are not considered;
6. Energy on satellites is sufficient to ensure the completion of

tasks;

The aim of scheduling is to select the appropriate antenna and start
time for TT&C tasks. Therefore, a decision variable 𝑥𝑘𝑖𝑗 is introduced
into the model. When task 𝑖 is scheduled in 𝑘th time window on antenna
𝑗, 𝑥𝑘𝑖𝑗 = 1; otherwise, 𝑥𝑘𝑖𝑗 = 0. The scheduling goal of the SRSP problem
is to obtain the highest profit. The objective function is represented as
follows:

Objective function:

max 𝑓 =
∑

𝑖∈𝑇

∑

𝑗∈𝐴𝑖

∑

𝑘∈𝑇𝑊𝑖𝑗

𝑝𝑖 ⋅ 𝑥
𝑘
𝑖𝑗 (1)

where 𝑝𝑖 denotes profit of task 𝑖, 𝑥𝑘𝑖𝑗 denotes whether task 𝑖 is scheduled
in the 𝑘th time window on the antenna 𝑗.
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Constraints of the SRSP problem mainly come from two aspects,
one is the task requirement constraint, and the other is the resource
requirement constraint [41]. The task requirement constraint restricts
the execution of the task in terms of the number of tasks and their
durations. Resource requirement constraint restricts the time attributes
of a task from the perspective of the resource’s ability to execute tasks.
Constraints:
(

𝑎𝑐𝑡𝑘𝑖𝑗 − 𝑑𝑡
)

× 𝑥𝑘𝑖𝑗 = 0,∀𝑖 ∈ 𝑇 , 𝑗 ∈ 𝐴𝑖, 𝑡𝑤
𝑘
𝑖𝑗 ∈ 𝑇𝑊𝑖𝑗 (2)

𝑡𝑘𝑖𝑗 + 𝑎𝑐𝑡𝑘𝑖𝑗 = 𝑒𝑡𝑘𝑖𝑗 ,∀𝑖 ∈ 𝑇 , 𝑗 ∈ 𝐴𝑖, 𝑡𝑤
𝑘
𝑖𝑗 ∈ 𝑇𝑊𝑖𝑗 (3)

𝑠𝑡𝑘𝑖𝑗 ⋅ 𝑥
𝑘
𝑖𝑗 ≤ 𝑠𝑡𝑘𝑖𝑗 ,∀𝑖 ∈ 𝑇 , 𝑗 ∈ 𝐴𝑖 (4)

𝑡𝑘𝑖𝑗 ⋅ 𝑥
𝑘
𝑖𝑗 ≤ 𝑙𝑒𝑡𝑘𝑖𝑗 ,∀𝑖 ∈ 𝑇 , 𝑗 ∈ 𝐴𝑖 (5)

𝑤𝑠𝑘𝑖𝑗 ⋅ 𝑥
𝑘
𝑖𝑗 ≤ 𝑠𝑡𝑘𝑖𝑗 ,∀𝑖 ∈ 𝑇 , 𝑗 ∈ 𝐴𝑖, 𝑡𝑤

𝑘
𝑖𝑗 ∈ 𝑇𝑊𝑖𝑗 (6)

𝑡𝑘𝑖𝑗 ⋅ 𝑥
𝑘
𝑖𝑗 ≤ 𝑡𝑤𝑒𝑘𝑖𝑗 ,∀𝑖 ∈ 𝑇 , 𝑗 ∈ 𝐴𝑖, 𝑡𝑤

𝑘
𝑖𝑗 ∈ 𝑇𝑊𝑖𝑗 (7)

∑

∈𝐴𝑖

𝑥𝑘𝑖𝑗 ≤ 1,∀𝑖 ∈ 𝑇 , 𝑗 ∈ 𝐴𝑖, 𝑡𝑤
𝑘
𝑖𝑗 ∈ 𝑇𝑊𝑖𝑗 (8)

∑

∈𝑇𝑊𝑖𝑗

𝑥𝑘𝑖𝑗 ≤ 1,∀𝑖 ∈ 𝑇 , 𝑗 ∈ 𝐴𝑖 (9)

∑

∈𝑇𝑊𝑖𝑗

∑

𝑗∈𝐴𝑖

𝑥𝑘𝑖𝑗 ≤ 1,∀𝑖 ∈ 𝑇 (10)

𝑡𝑖𝑗 ⋅ 𝑥
𝑘
𝑖𝑗 + 𝛾 ≤ 𝑠𝑡𝑖′𝑗 +𝑀 ⋅

(

1 − 𝑥𝑘
′

𝑖′𝑗

)

,∀𝑖, 𝑖′ ∈ 𝑇 , 𝑗 ∈ 𝐴𝑖 (11)

𝑘
𝑖𝑗 ∈ {0, 1} ,∀𝑖 ∈ 𝑇 , 𝑗 ∈ 𝐴𝑖, 𝑡𝑤

𝑘
𝑖𝑗 ∈ 𝑇𝑊𝑖𝑗 (12)

Constraint (2) indicates that the actual duration of a task should be
he same as the required time. Constraint (3) indicates the relationship
etween task start time and end time. Constraint (4) indicates that the
ask needs to start after the earliest allowable start time of the task.
onstraint (5) indicates that the task needs to be completed before
he latest allowable time of the task. Constraint (6) indicates that the
ask needs to start after the start time of the visible time window.
onstraint (7) indicates that the task needs to be completed before the
nd time of the visible time window. Constraint (8) indicates that one
ask can be executed at most once. Constraint (9) indicates that each
ask only can be executed by one antenna. Constraint (10) indicates that
ach task only can be executed in one visible time window. Constraint
11) indicates that two tasks must meet task conversion time interval
equirements. Constraint (12) indicates the value range of the decision
ariable.

. Solving method

To solve the SRSP problem, the C-BGA is proposed by combining
genetic algorithm and a clustering method. The clustering method

uides the crossover and mutation operation of population search.
task arrangement algorithm (TAA) is adopted to generate a task

xecution plan for individuals. This section will introduce the TAA and
-BGA below.

.1. Task arrangement algorithm

The TAA determines the specific execution plan of each task accord-
ng to a series of individuals obtained by the C-BGA. Tasks are inserted
nto time windows following a priority order. The pseudo-code of the
AA is shown in Algorithm 1.

As shown in Algorithm 1, a task determines whether a time window
4

an execute it in order (Line 2). If the length of a time window exceeds
Algorithm 1: Task Arrangement Algorithm (TAA)
Input: Task Set 𝑇 , Time Window 𝑇𝑊 , Population 𝑃
Output: Fitness of population 𝑅

1 foreach 𝑖𝑛𝑑𝑖𝑜 in 𝑃 do
2 foreach 𝑡𝑎𝑠𝑘𝑖 in the order in 𝑖𝑛𝑑𝑖𝑜 do
3 foreach 𝑡𝑤𝑘

𝑖𝑗 in 𝑇𝑊 do
4 𝑒𝑎𝑡𝑖 ← max

{

𝑡𝑤𝑠𝑘𝑖𝑗 , 𝑒𝑠𝑡𝑖
}

;

5 𝑙𝑎𝑡𝑖 ← min
{

𝑡𝑤𝑒𝑘𝑖𝑗 , 𝑙𝑒𝑡𝑖
}

;
6 if (𝑡𝑤𝑒𝑘𝑖𝑗 − 𝑡𝑤𝑠𝑘𝑖𝑗 ) ≥ 𝑑𝑖 and (𝑙𝑎𝑡𝑖 − 𝑒𝑎𝑡𝑖) ≥ 𝑑𝑖 then
7 𝑠𝑡𝑖 ← Arrange task start time at 𝑒𝑎𝑡𝑖;
8 𝑒𝑡𝑖 ← Arrange task end time at (𝑠𝑡𝑖 + 𝑑𝑖);
9 Omit 𝑡𝑤𝑠𝑘𝑖𝑗 from TW ;
10 if 𝑒𝑎𝑡𝑖 == 𝑡𝑤𝑠𝑘𝑖𝑗 then
11 Generate a new time window 𝑡𝑤𝑘′

𝑖𝑗 with the

attributes
[

𝑒𝑡𝑖, 𝑡𝑤𝑒𝑘𝑖𝑗
]

;
12 else
13 Generate two new time windows 𝑡𝑤𝑘′

𝑖𝑗 and

𝑡𝑤𝑘′′
𝑖𝑗 with the attributes

[

𝑡𝑤𝑠𝑘𝑖𝑗 , 𝑠𝑡𝑖
]

and
[

𝑒𝑡𝑖, 𝑡𝑤𝑒𝑘𝑖𝑗
]

;

14 𝑇𝑊 ∪
{

𝑡𝑤′, 𝑡𝑤′′} ← Update 𝑇𝑊 with new time
windows ;

15 Try to arrange the next task 𝑡𝑎𝑠𝑘𝑖+1;
16 else
17 Turn to next time window 𝑡𝑤𝑘+1

𝑖𝑗 ;

18 Save as task execution plan ;
19 𝑅 ←Calculate fitness for arranged tasks in 𝑃 ;

the time required by the task, the algorithm will try to schedule it
(Line 5). Based on this, A quick identification method is designed to
determine whether the task is to be scheduled. Two new variables are
introduced before scheduling, 𝑒𝑎𝑡𝑖 and 𝑙𝑎𝑡𝑖, which denote the earliest
actual available time and the latest actual available time, respectively.
The calculation method of these two variables is as shown in Eqs. (13)
and (14). If the range of actual available time exceeds the required time
for a task, it can be successfully scheduled, and the task is scheduled
to start at the earliest actual available time (Line 6). After the task
is successfully scheduled, available time window resources need to be
updated. If the earliest actual available time of the task is equal to the
earliest allowable start time of the task, the original time window is
clipped to a new time window (Line 9); otherwise, the original time
window is clipped to two new time windows (Line 11). After finishing
the clipping process, the time window set will be updated (Line 12).
The next task will be considered to schedule.

𝑒𝑎𝑡𝑖 ← max
{

𝑡𝑤𝑠𝑘𝑖𝑗 , 𝑒𝑠𝑡𝑖
}

, 𝑡𝑤𝑠 ∈ 𝑇𝑊 , 𝑒𝑠𝑡 ∈ 𝑇 (13)

𝑎𝑡𝑖 ← min
{

𝑡𝑤𝑒𝑘𝑖𝑗 , 𝑙𝑒𝑡𝑖
}

, 𝑡𝑤𝑒 ∈ 𝑇𝑊 , 𝑙𝑒𝑡 ∈ 𝑇 (14)

TAA arranges all tasks 𝑇 one by one according to time windows
𝑊 . Therefore, the time complexity of the task arrangement algorithm

s 𝑂(|𝑇 | × |𝑇𝑊 |), where |𝑇 | represents the number of tasks, |𝑇𝑊 |

enotes the number of time windows.

.2. Cluster-based genetic algorithm

To make full use of data features in the problem, we incorporate
he clustering method that introduces data features into the genetic
lgorithm framework. The clustering method updates the feature ma-
rix in time according to arrangement results. New categories will
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generate and guide the subsequent optimization process according to
the updated information.

The traditional genetic algorithm has a strong global search abil-
ity but performs poorly in local search. Moreover, genetic operators
(including crossover, mutation, etc.) in genetic algorithms need to be
carefully designed according to the characteristics of the specific prob-
lem. This algorithm design method might easily lead to an algorithm
that can only perform well for specific problems or specific scenarios.
To change this situation, features and the information obtained are
used through the optimization process in the algorithm framework. The
k-means clustering method gives the algorithm a strong capacity for
generalization.

Algorithm 2: Cluster–based Genetic Algorithm
Input: Task Set 𝑇 , Time Window Set 𝑇𝑊 , 𝐺𝑒𝑛, 𝑇ℎ𝑟𝑒1, 𝑇ℎ𝑟𝑒2,

𝑇ℎ𝑟𝑒3, 𝑝𝑒𝑟, 𝑛, 𝐾
Output: 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

1 Initialization: 𝑔𝑒𝑛 = 1, 𝑐𝑜𝑢𝑛𝑡1 = 0, 𝑐𝑜𝑢𝑛𝑡2 = 0. 𝑐𝑜𝑢𝑛𝑡3 = 0, 𝑙_𝑏𝑒𝑠𝑡,
𝑔_𝑏𝑒𝑠𝑡, 𝑙𝑎𝑠𝑡_𝑏𝑒𝑠𝑡 ;

2 𝑃0 ← Heuristic Initial Population Generation(𝑇 ,|𝑃 |) ;
3 𝐶 ← K-means Method(𝑇 ,𝑛,𝐾) ;
4 while 𝑔𝑒𝑛 not equals to 𝐺𝑒𝑛 do
5 𝑅 ← Generate plan by Task Arrangement

Algorithm(𝑇 ,𝑇𝑊 ,𝑃 ) ;
6 if 𝑙_𝑏𝑒𝑠𝑡 > 𝑔_𝑏𝑒𝑠𝑡 then
7 𝑔_𝑏𝑒𝑠𝑡 ← 𝑙_𝑏𝑒𝑠𝑡 ;
8 𝑐𝑜𝑢𝑛𝑡1 = 𝑐𝑜𝑢𝑛𝑡1 + 1 ;
9 if 𝑙_𝑏𝑒𝑠𝑡 < 𝑙𝑎𝑠𝑡_𝑏𝑒𝑠𝑡 then
10 𝑐𝑜𝑢𝑛𝑡2 = 𝑐𝑜𝑢𝑛𝑡2 + 1 ;
11 else
12 if 𝑙_𝑏𝑒𝑠𝑡 < 𝑙𝑎𝑠𝑡_𝑏𝑒𝑠𝑡 ∗ 𝑝𝑒𝑟 then
13 𝑐𝑜𝑢𝑛𝑡3 = 𝑐𝑜𝑢𝑛𝑡3 + 1 ;

14 Select individual and category by Roulette Wheel Method ;
15 𝑃 ′ ← Use Cluster-based Crossover Method(𝑃 ) ;
16 𝑃 ′ ← Use Cluster-based Mutation Method(𝑃 ) ;
17 if 𝑐𝑜𝑢𝑛𝑡1 equals to 𝑇ℎ𝑟𝑒1 then
18 𝐾 ′ ← Update 𝐾 ;
19 𝐶 ′ ← Update Feature Matrix by K-means

(𝐶 ∪ 𝑅,𝑛 + 1,𝐾 ′) ;
20 Reset 𝑐𝑜𝑢𝑛𝑡1 to 0 ;
21 if 𝑐𝑜𝑢𝑛𝑡2 equals to 𝑇ℎ𝑟𝑒2 then
22 𝑃 ′ ← Update worst individual in 𝑃 with 𝑔_𝑏𝑒𝑠𝑡 ;
23 Reset 𝑐𝑜𝑢𝑛𝑡2 to 0 ;
24 if 𝑐𝑜𝑢𝑛𝑡3 equals to 𝑇ℎ𝑟𝑒3 then
25 𝑃 ′ ← Update worst individual by 𝑙_𝑏𝑒𝑠𝑡 ;
26 𝑃 ′ ← Generate a new individual and select an

individual to replace randomly ;
27 Reset 𝑐𝑜𝑢𝑛𝑡3 to 0 ;
28 𝑙𝑎𝑠𝑡_𝑏𝑒𝑠𝑡 ← Update 𝑙_𝑏𝑒𝑠𝑡;
29 𝑃 ← Update 𝑃 ′ ;
30 𝑔𝑒𝑛 = 𝑔𝑒𝑛 + 1 ;

The pseudo-code of the C-BGA is shown in Algorithm 2. As shown
n Algorithm 2, a variety of strategies are adopted in the C-BGA. A
euristic population initialization strategy is used to generate the initial
opulation (Line 2). K-means clustering method obtains classification
esults according to data and the initial value of K (Line 3). TAA is used
o schedule tasks and calculate fitness value according to tasks’ profit
Line 5). According to the fitness value, a cluster-based crossover (Line
5) and cluster-based mutation (Line 16) are used to generate offspring.
wo new individual generation strategy is also used to improve the
5

earch performance of the C-BGA (Line 17–27).
Fig. 4. An example of individual coding.

4.2.1. Coding
The encoding and decoding method are crucial for genetic algorithm

and directly affects the generation of solutions. C-BGA uses an integer
number encoding method. Each gene represents a task to be executed.
The advantage of such encoding is that the genes within the C-BGA
individual are unique. Therefore, the decoding does not require the
use of any additional repair methods to ensure the correctness of the
solution. The TAA is used in the C-BGA to accomplish the decoding
process.

Fig. 4 shows a C-BGA individual encoding example of one solution
to the SRSP problem containing 6 tasks, where ‘‘5’’, ‘‘6’’, ‘‘1’’ ‘‘4’’, ‘‘2’’,
and ‘‘3’’ correspond to the tasks in the task set, respectively. When using
TAA for decoding, it will try to arrange tasks in the order of the figure
and obtain the plan.
4.2.2. Heuristic population initialization method

Algorithm 3: Heuristic Initial population generation
Input: Task Set 𝑇 , Population Size |𝑃 |
Output: Initial Population 𝑃0

1 Initialization: 𝑖 = 1 ;
2 while 𝑖 not equals to |𝑃 | do
3 if 𝑖 ≤ 1

5 |𝑃 | then
4 𝑃0 ← Use EST Initialization Method(𝑇 , 𝑙1, 𝑙2) ;

5 if 𝑖 > 1
5 |𝑃 | and 𝑖 ≤ 2

5 |𝑃 | then
6 𝑃0 ← Use LET Initialization Method(𝑇 , 𝑙1, 𝑙2) ;

7 if 𝑖 > 2
5 |𝑃 | and 𝑖 ≤ 3

5 |𝑃 | then
8 𝑃0 ← Use TP Initialization Method(𝑇 , 𝑙1, 𝑙2) ;

9 if 𝑖 > 3
5 |𝑃 | and 𝑖 ≤ 4

5 |𝑃 | then
10 𝑃0 ← Use TD Initialization Method(𝑇 , 𝑙1, 𝑙2) ;

11 if 𝑖 > 4
5 |𝑃 | then

12 Use Random Initialization Method(𝑇 ) ;
13 𝑙1, 𝑙2 ←Choose two locations randomly ;
14 𝑖 = 𝑖 + 1 ;

Four heuristic initialization methods and a random initialization
population method are used in the C-BGA to generate a high-quality
population. These four heuristic population initialization methods are
called the initialization method based on the earliest allowable start
time (EST), the initialization method based on the latest allowable
end time (LET), the initialization method based on task profit sorting
(TP), and the initialization method based on task duration sorting (TD)
respectively.

Heuristic Rule 1: Initialization method based on the earliest allow-
able start time sorting (EST). According to the earliest allowable start
time of tasks, a sequence is sorted in order from front to back, and
individuals are generated according to the sorted order.

Heuristic Rule 2: Initialization method based on the latest allow-
able end time sorting (LET). According to the latest allowable end
time of tasks, the sequence is sorted in order from front to back, and
individuals are generated according to the sorted order.

Heuristic Rule 3: Initialization method based on task profit sorting
(TP): According to the profit of tasks, tasks are sorted in descending
order, and individuals are generated according to the sorted order.

Heuristic Rule 4: Initialization method based on task duration
sorting (TD). According to the profit of tasks, tasks are sorted from
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Fig. 5. Changing process of K value.

small to large, and individuals are generated according to the sorted
order.

After adopting each heuristic rule to generate a population of indi-
viduals, it is necessary to adjust partial sequences to make individuals
more diverse. Combining heuristics and random methods can make
it easier for each individual to find a good search starting position.
These four heuristic methods and random methods respectively occupy
20% individuals in the population. The pseudo-code of the heuristic
population initialization method is shown as Algorithm 3.

4.2.3. Clustering method
The goal of the clustering method is to divide the sample set into

multiple sub-sets based on data characteristics. Using this method has
two advantages. On the one hand, the clustering method can make full
use of satellite task data and guide the optimization process. On the
other hand, this approach can cope with the lack of regularity in the
field of satellite scheduling. Among these methods, the K-means cluster-
ing method is a typical type. The K-means clustering method divides the
data into multiple clusters of discrete or hierarchical structures based
on the similarity of data features. The final result of classification is to
be as close as possible between samples in one cluster, and samples in
different clusters are significantly different.

Feature information used by the clustering method is updated in
the optimization process. An important feature that needs to be added
is whether tasks are successfully scheduled. The feature matrix needs to
be updated during the population search. Before clustering, normaliza-
tion should be used. Through normalization, data will not be affected
by units. The formula of normalization is as follows:

𝑦′ =
𝑦 − 𝑦min

𝑦max − 𝑦min
(15)

where, 𝑦 is the feature value, 𝑦max is the maximum value of feature 𝑦,
and 𝑦min is the minimum value of feature 𝑦.

A fixed value of K is likely to cause invalid searches when the
optimization process reaches a certain stage. To improve the search
efficiency, we choose to make the number of categories K change
continuously in the range of [lower_bound, upper_bound]. When the
condition is satisfied, the K value will decrease by 1. The process of K
value change is shown in Fig. 5.

The pseudo-code of the K-means method is shown in Algorithm 4.

4.2.4. Fitness function
Fitness function is the basis for genetic evolution, selection, cluster-

based crossover, and mutation. The performance of individuals in the
population is also evaluated by the fitness function. The objective
function is used as our fitness function, and the fitness value of an
individual is calculated by Eq. (1).
6

Algorithm 4: K-means Method
Input: Set 𝐷, Feature Number 𝑛, Category 𝑘
Output: 𝐶

1 Initialization: Random choose 𝑘 in 𝐷 to generate 𝜇 ;
2 while No update occurs in 𝜇 do
3 Let 𝐶 = ∅ ;
4 for 𝑖 = 1, 2, ..., |𝐷| do
5 𝑑𝑖𝑗 ← Calculate Euclidean distance ‖

‖

‖

𝑥𝑖, 𝜇𝑗
‖

‖

‖2
;

6 𝜆𝑗 ← argmin𝑗∈(1,2,...,𝐾)𝑑𝑖𝑗 ;
7 𝐶𝜆𝑖 ← 𝐶𝜆𝑖 ∪

{

𝑥𝑖
}

;
8 for 𝑗 = 1, 2, ..., |𝑘| do
9 𝜇𝑗 ′ ←

1
|

|

|

𝐶𝑗
|

|

|

∑

𝑥∈𝐶𝑗
𝑥 ;

10 if 𝜇𝑗 ′ not equals to 𝜇𝑗 then
11 𝜇𝑗 ← Update 𝜇𝑗 ′ ;

4.2.5. Selection
The selection operation contains two aspects, one is to select an

individual, and the other is to select a category to which a task belongs.
Individuals and categories selected will be used in the crossover or
mutation process. The selection operation needs to reflect performance
differences between individuals in the population. The Roulette Wheel
method is used according to the fitness function, which makes the
individual with better performance and categories to be selected easier.
The equation for selecting individuals of Roulette Wheel method is as
follows:

�̄�𝑙 =
𝑓𝑙

∑

𝑙∈𝑃 𝑓𝑙
(16)

where �̄�𝑙 is the probability of individual 𝑙, 𝑓𝑙 is the fitness of individual
𝑙.

After selecting individuals for follow-up evolution operation, it is
necessary to select categories based on the results of classification.
The equation for calculating fitness value based on categories is shown
below.

�̂�𝑚 =

∑

𝑙∈𝑃
∑

𝑡𝑚∈𝑇𝑚 𝑓𝑡𝑚𝑗
∑

𝑙∈𝑃
∑

𝑖∈𝑇 𝑓𝑖𝑙
,∀𝑚 ∈ 𝑀 (17)

where, �̂�𝑚 is the probability of category 𝑚, 𝑓𝑚 is the fitness of category
𝑚.

After using Roulette Wheel to select individual and task categories
respectively, cluster-based crossover and mutation operations can be
performed.

4.2.6. Cluster-based crossover
A new crossover method based on the clustering method is proposed

in C-BGA, called cluster-based crossover. Cluster-based crossover in-
troduces a new concept, the neighborhood of cluster, that is, several
categories that are close to one category.

After selecting an individual and one of the categories for crossover,
it is necessary to use the neighborhood of the cluster to determine
another task category. The other task category used for crossover
requires both to be within the previously selected neighborhood and
outside the task category that has been selected.

After obtaining the two categories for crossover, equal-length gene
fragments are selected belonging to the two categories respectively.
Then, the two gene segments are swapped to complete the crossover
operation.

4.2.7. Cluster-based mutation
There are two types of mutation based on clustering, one is called

mutation within the same category, and the other is called mutation
within different categories. Using these two mutation methods not
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only can exchange execution positions between tasks that have similar
data characteristics, but also exchange between large characteristic-
differences tasks. Using two mutation methods can increase the diver-
sity of mutations and let the algorithm find a solution.

Mutation within the same category: Mutation within the same
category refers to exchange positions between two tasks in the same
category obtained by the clustering method. In this way, a new indi-
vidual is obtained and added to the population.

Mutation between different categories: Select two tasks for po-
sition exchange from different categories, and two tasks in different
categories are exchanged. In this way, a new individual is obtained and
added to the population.

These two mutation methods have the same possibility of being
selected. When the mutation operation occurs, one of the mutation
methods is randomly selected to generate a new individual.

4.2.8. Termination condition
After the optimization process to a certain stage, the algorithm stops

and outputs the optimal solution, which is the final task execution plan.
We set the termination condition of the C-BGA algorithm to be when
iterations reach the maximum optimization generation.

4.2.9. Complexity analysis
The solution method is mainly composed of a task arrangement

algorithm, genetic algorithm, and K-means method. The task arrange-
ment algorithm and K-means method are included in the main process
of the genetic algorithm, which should be determined according to
the overall complexity of the C-BGA algorithm. The time complexity
of C-BGA algorithm is 𝑂(𝐺𝑒𝑛 × |𝑇 | × |𝑇𝑊 | × |𝑃 |), where 𝐺𝑒𝑛 denotes
he max generation |𝑇 | denotes the number of tasks, |𝑇𝑊 | denotes the
umber of time windows, |𝑃 | denotes the population size.

. Experimental results and discussions

.1. Experiment settings

.1.1. Experiment environment
All algorithms in the experiment are run by Matlab2020a under

he configuration environment of Core I7-7700 3.6 GHz CPU, 8 GB
emory, and Windows 10 operating system.

.1.2. Comparative algorithms
Some algorithms solving satellite scheduling problems and other

cheduling problems are selected as comparative algorithms. We choose
knowledge-based genetic algorithm, improved adaptive large neigh-

orhood search algorithm, tabu-based adaptive large neighborhood
earch algorithm, and firework algorithm as comparative algorithms. In
ddition, we also use ILOG CPLEX 12.6 Version as one of the compar-
tive algorithms. The maximum runtime of the Solver is set to 30 min.
his time setting is due to the fact that in a real scenario, the algorithm
eeds to find the solution in a short time. Then, the satellites and
round stations can be fully used. Knowledge-based genetic algorithm
KBGA) combines the knowledge information of planning into a genetic
lgorithm, and an adaptive mechanism was used to let this select
lgorithm knowledge optimize [42]. The tabu-based adaptive large
eighborhood search algorithm (ALNS/TPF) use tabu search strategy
s used in an adaptive large neighborhood search framework to reduce
he possibility of repeated searches [43]. The firework algorithm (FWA)
enerates sparks from explosions of fireworks and uses the fireworks
opulation to search [44].

Each random search algorithm will run 30 times and record re-
ults. The optimization performance of the algorithm will be evaluated
hrough multiple dimensions. To comprehensively evaluate the effect
f the algorithm on the SRSP problem, we set up a variety of eval-
ation indicators. We will evaluate the random search algorithm from
hree aspects: best performance (denoted as Max), average performance
7

denoted as Avg), and worst performance (denoted as Min). C
.1.3. Instance settings
Experimental instances used in this section are generated by STK

1.2.0. The time range of tasks is within one day. There are three
ategories based on the number of instances, small-scale (S), medium-
cale (M), and large-scale (L). For each scale, two types of scenes
ith low density (L) and high density (H) are set. We set 10 sce-
arios for each scale, 5 low-density scenarios, and 5 high-density
cenarios, respectively. Small-scale instances are set between 100 and
00, medium-scale instances are set between 400 and 600, and large-
cale instances are set between 800 and 1000. In each scale, there is
n interval of 50 tasks between instances. All low-density tasks are
istributed within 24 h. Small-scale with high-density instances are
istributed within 9 h, medium-scale with high-density instances are
istributed within 15 h, and large-scale with high-density instances are
istributed within 21 h. For convenience, the ‘‘A-B-C’’ format is used to
epresent an instance. ‘‘A’’ represents task size, ‘‘B’’ represents density,
nd ‘‘C’’ represents the internal number in a group.

.1.4. Parameters settings
In the C-BGA, the population size |𝑃 | is set to 10, the max Genera-

ion 𝐺𝑒𝑛 is set to 500, 𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑1 is set to 10, 𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑2, 𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑3 are
et to 20, the probability of crossover is set to 0.9 and the probability
f mutation is set to 0.05. The parameter settings of the comparative
lgorithm remain consistent with those in the literature.

.2. Result analysis

.2.1. Planning results under different task scales
All 30 instances with different densities are used to verify the

cheduling performance of algorithms and results are shown in Table 2.
he increase in instance scale is accompanied by growing in profit.
hen the instance scale increases to medium, the growth rate of profit

egins to slow down. This is due to the limited resources of satellites
nd ground stations. It is extremely difficult to find a better execution
lan among numerous tasks. C-BGA has good performance in all 30
nstances. In small-scale and medium-scale instances, scheduling results
rom the best to the worst are followed by C-BGA, FWA, ALNS/TPF, and
BGA. In large-scale scenarios, the optimization performances of KBGA
nd ALNS/TPF are between C-BGA and FWA. It can be seen from an
verall trend that the C-BGA is easier to obtain higher profit than other
omparative algorithms in larger-scale instances. ILOG CPLEX can find
he theoretical optimal value. However, since the SRSP problem is NP-
ard and the maximum runtime of the algorithm is limited, the results
eflect the solution performance of ILOG CPLEX is relatively poor. The
olver search performance begins to decline after the task scale reached
00, and it is difficult to find a good solution when instance density or
cale increases.

.2.2. Algorithm stability analysis
Large-scale instances are easier to reflect the stability of algorithms.

ox plots of L-L-5 and L-H-5 instances are shown in Fig. 6(a) and (b).
he C-BGA has the best stability, maintaining small volatility when the
ask scale is 1000. ALNS/TPF performs the worst, which is the easiest
o obtain results with a large deviation. The stability results of FWA and
BGA are between the scheduling results of C-BGA and ALNS/TPF.

.2.3. Significance test
Statistical analysis is also meaningful for evaluating random search

lgorithms. Wilcoxon rank sum test is taken on C-BGA with KBGA,
LNS/TPF, and FWA in pairs. Results are shown in Table 3. These
esults clearly show that the proposed algorithm is better than com-
arative algorithms except for a few instances. In terms of statistical
esults, there is a significant difference between results obtained by the

-BGA and comparative algorithms.
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Fig. 6. Box plots of L-L-5 and L-H-5 instances.
Table 2
Scheduling results of 30 instances.

Instance C-BGA KBGA ALNS/TPF FWA ILOG

Max Avg Min Max Avg Min Max Avg Min Max Avg Min

S-L-1 522 522 522 522 516.6 509 522 518.6 515 522 521.03 519 519
S-L-2 777 772.4 767 763 748.37 739 762 752.7 738 769 762.2 758 708
S-L-3 1016 1009.5 1003 986 947.13 929 980 961.6 944 998 979.37 967 992
S-L-4 1212 1187.03 1169 1171 1135.2 1118 1159 1147.5 1134 1178 1166.07 1154 1061
S-L-5 1293 1265 1246 1222 1184.6 1155 1227 1197.77 1180 1240 1218.53 1206 399
S-H-1 353 348.13 342 336 319.9 302 341 324.8 316 344 335.80 329 345
S-H-2 504 489.23 472 471 438 415 458 438.77 420 475 461.50 450 220
S-H-3 632 619.87 608 577 544.77 524 582 552.27 538 588 572.53 561 586
S-H-4 637 613.7 599 570 541.03 515 572 552.17 536 590 574.87 562 577
S-H-5 661 642.4 626 597 572.7 553 606 575.17 547 627 605.17 593 437

Ave 760.7 746.93 735.4 721.5 694.83 675.9 720.9 702.13 686.8 733.1 719.71 709.9 584.4

M-L-1 1576 1553.73 1527 1447 1416.27 1377 1476 1437.9 1394 1490 1472.1 1460 1447
M-L-2 1547 1517.3 1478 1447 1395 1351 1431 1391.43 1369 1461 1438.1 1420 806
M-L-3 1612 1592.07 1555 1479 1445.47 1414 1462 1438.90 1408 1525 1485.73 1462 705
M-L-4 1772 1743.7 1725 1629 1564.7 1532 1614 1565.7 1523 1649 1613.93 1591 765
M-L-5 1836 1816.47 1796 1667 1612.97 1580 1671 1627.77 1566 1704 1672.67 1651 799
M-H-1 1300 1274.67 1252 1183 1153.2 1128 1192 1159.97 1135 1223 1203.07 1186 1191
M-H-2 1358 1332.07 1319 1237 1192.8 1171 1247 1205.97 1164 1276 1252.60 1231 537
M-H-3 1344 1331.97 1311 1233 1186.07 1134 1224 1188.57 1150 1267 1237.93 1220 627
M-H-4 1434 1405.17 1378 1305 1233.4 1196 1276 1225.27 1179 1311 1282.93 1259 629
M-H-5 1556 1538.47 1522 1323 1281.97 1246 1314 1277.1 1223 1383 1341 1315 762

Ave 1533.5 1510.56 1486.3 1395 1348.18 1312.9 1390.7 1351.86 1311.1 1428.9 1400.01 1379.5 826.8

L-L-1 2118 2083.2 2065 1825 1770.53 1725 1811 1757.4 1688 1842 1820.57 1796 962
L-L-2 2046 2013.47 1990 1769 1725.1 1685 1750 1709.57 1662 1819 1784.4 1756 3
L-L-3 2210 2177.37 2160 1872 1776.23 1721 1825 1756.93 1678 1858 1829.93 1807 1064
L-L-4 2165 2141.53 2118 1838 1810.8 1773 1881 1810.37 1730 1929 1893.47 1865 3
L-L-5 2257 2231.8 2212 1980 1878.13 1834 1946 1866.5 1803 1971 1940.87 1903 871
L-H-1 1910 1878.57 1861 1702 1606.73 1568 1637 1580.87 1524 1683 1658.47 1638 780
L-H-2 1929 1908.33 1888 1614 1562.67 1525 1636 1566.33 1486 1662 1625.47 1595 901
L-H-3 1847 1797.3 1769 1561 1517.2 1483 1574 1513.83 1436 1613 1587.23 1566 721
L-H-4 1839 1812.93 1784 1590 1534.47 1495 1626 1535.13 1440 1635 1608.57 1591 597
L-H-5 2011 1990.9 1965 1710 1668.47 1627 1680 1631.13 1579 1778 1719.93 1684 549

Ave 2033.2 2003.54 1981.2 1746.1 1685.03 1643.6 1736.6 1672.81 1602.6 1779 1746.89 1720.1 645.1
5.2.4. Optimization time analysis
We compared the time required for the C-BGA to reach the same

average performance as KBGA, and the results are shown in Figs. 7(a)
and 7(b). The 100% bar in the figure represents the time taken by the
KBGA for each instance, and the black bar represents the percentage
of comparative algorithm time taken by the C-BGA. It can be seen
from the results that the C-BGA only needs about one-third of KBGA’s
time to achieve the same optimization effect. In other words, a good-
quality solution can be found within a short time after a population is
initialized.

5.2.5. Coverage analysis
Due to the length of the article, we chose two instances, L-L-5,

and L-H-5, to verify the convergence speed of the algorithm. Results
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in Figs. 8(a) and 8(b) clearly show that the convergence speeds of
algorithms are different. FWA has a faster coverage in the initial stage
of optimization, but it is easy to fall into a local optimum. KBGA’s
coverage speed is the slowest among several algorithms. C-BGA has a
fast convergence speed and ensures that this algorithm is not easy to fall
into local optimum through the update of the clustering method. These
experimental results show that the proposed algorithm can obtain
better optimization performance than comparative algorithms while
maintaining good convergence speed.

5.2.6. Comparison with the deep reinforcement learning method
Deep reinforcement learning is also a method with good solution

performance. We use the Deep Reinforcement Learning (DRL) proposed
in [20] to compare the solution performance with the C-BGA. The



Swarm and Evolutionary Computation 79 (2023) 101316Y. Song et al.
Fig. 7. Proportion of optimization time using different scheduling algorithms.
Fig. 8. Convergence results.
Fig. 9. Comparison of C-BGA and DRL.
Table 3
Wilcoxon rank sum test.

Algorithm pair Instance set Indicator #Wins #Ties #Losses p-value

C-BGA vs. KBGA
Low density (15) Max 14 1 0 7.92E−05

Avg 15 0 0 4.64E−05

High density (15) Max 15 0 0 2.25E−05
Avg 15 0 0 9.56E−06

C-BGA vs. ALNS/TPF
Low density (15) Max 14 1 0 8.58E−05

Avg 15 0 0 9.21E−05

High density (15) Max 15 0 0 2.48E−05
Avg 15 0 0 1.89E−05

C-BGA vs. FWA
Low density (15) Max 14 1 0 2.11E−05

Avg 15 0 0 1.98E−04

High density (15) Max 15 0 0 5.09E−05
Avg 15 0 0 5.85E−05
9
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Fig. 10. Results of different population initialization strategies.
Fig. 11. Results of different population evolution strategies.
parameter settings of DRL remain the same as in the literature. Fig. 9
shows the experimental comparison results for a small-scale scenario,
with C-BGA as the best value for the algorithm operation. The C-BGA
obtains approximately equal gain values with the DRL method for
instances of 50 and 100 task scales. In contrast, the solution perfor-
mance of DRL is not as good as C-BGA when the task scale increases.
This reflects that the proposed algorithm has stronger global search
performance and is suitable for handling complex problem instances.

5.3. Algorithm strategies analysis

5.3.1. Effectiveness of population initialization strategy
To verify the effectiveness of improvements in C-BGA, a C-BGA with

a random initialization method is used to compare with the heuristic
population initialization method (denoted as C-BGAR). The results of
the average performance of algorithms are shown in Fig. 10(a) and
(b). In both low-density and high-density instances, it can be seen
that the heuristic population initialization strategy has a more obvious
improvement in profit as the scale of instances increases. This heuristic
population initialization strategy makes it easier for the algorithm to
find a high-quality solution when the distribution of instances is dense.

5.3.2. Effectiveness of population evolution strategy
This part compares C-BGA and C-BGA without cluster-based genetic

operators (denoted as C-BGA/W) in large-scale instances. It can be
seen from Fig. 11 that cluster-based genetic operators can help C-
BGA to obtain better scheduling performance. This reflects that the
K-means approach can fully use the data features to guide the pop-
ulation evolution process. Traditional genetic operators, on the other
hand, are more stochastic and may consistently fail to find higher-
quality solutions. These experiments demonstrate the effectiveness of
cluster-based crossover and cluster-based mutation in C-BGA.
10
5.3.3. K change method analysis
In our solution method, it is mentioned that the K value changes

within an interval, and the number of cluster categories is determined
dynamically. To verify the rationality of the K value change method,
we selected the other four K value change methods for comparison.
The first method is based on the triggering value change condition
(denoted as C-GBAK1). The value of K is reduced by one until it reaches
the lower bound and remains unchanged. The second method is to
change the K value directly to the lower bound value after reaching a
certain percentage of the maximum optimization generation (denoted
as C-GBAK2), and the percentage here is set to 0.2. The third method
is based on triggering the K value change condition (denoted as C-
GBAK3). The value is reduced by one until it reaches the lower bound,
warms to the value of the average of upper and lower bounds, and
then keeps K unchanged after falling again to the lower bound. The
last method is that K is a fixed value and remains unchanged during
the whole optimization process (denoted as C-GBAK4).

As shown in Figs. 12(a) and 12(b), adopting the K value change
method in the C-BGA algorithm can bring significant optimization
improvement in the vast majority of instances. Only two instances of
L-H-3 and L-H-3 do not show significant improvement. However, there
is little difference between the other four K value change methods. The
results also indicate that the K change method in the C-BGA is more
effective when the density is low. It is effective to adopt the K value
change method in the algorithm.

It can be seen from the above experimental results that the proposed
algorithm has achieved good optimization performance in multiple
instances. It is also evidence that C-BGA can effectively solve the SRSP
problem. Besides, it is not difficult to find that the C-BGA performs well
in large-scale instances, which shows that if there are numerous tasks
in practical applications in the future, this algorithm can still obtain a
satisfied task execution plan.



Swarm and Evolutionary Computation 79 (2023) 101316Y. Song et al.
Fig. 12. Results of changing methods.
6. Conclusion

This paper focuses on the satellite ranging scheduling problem in
an effort to improve satellite management capabilities and promote
aerospace technologies. An improved genetic algorithm based on clus-
tering is designed to solve the SRSP problem. C-BGA adopts a variety of
strategies to improve algorithm optimization performance and obtain
higher-quality solutions. A heuristic initialization strategy can obtain
a good initial solution while ensuring differences between individuals.
This method helps a lot in the subsequent optimization process. Clus-
tering methods and cluster-based operations are two key parts of the
C-BGA. Solutions are found through feature information updates and
cluster-based population evolution. The proposed algorithm solves the
SRSP problem well and has the prospect of being well used in actual
satellite range scheduling systems.

In future research, more artificial intelligence methods will be con-
sidered, such as reinforcement learning and deep learning. How to use
the trained model to solve online scheduling problems will also become
an important direction for improving the operational capability of a
satellite system. More complex conditions will also be studied.
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