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Abstract—An efficient team is essential for the company to
successfully complete new projects. To solve the team formation
problem considering person-job matching (TFP-PJM), a 0-1
integer programming model is constructed, which considers
both person-job matching and team members’ willingness to
communicate on team efficiency, with the person-job matching
score calculated using intuitionistic fuzzy numbers. Then, a rein-
forcement learning-assisted genetic programming algorithm (RL-
GP) is proposed to enhance the quality of solutions. The RL-GP
adopts the ensemble population strategies. Before the population
evolution at each generation, the agent selects one from four
population search modes according to the information obtained,
thus realizing a sound balance of exploration and exploitation. In
addition, surrogate models are used in the algorithm to evaluate
the formation plans generated by individuals, which speeds up
the algorithm learning process. Afterward, a series of comparison
experiments are conducted to verify the overall performance of
RL-GP and the effectiveness of the improved strategies within the
algorithm. The hyper-heuristic rules obtained through efficient
learning can be utilized as decision-making aids when forming
project teams. This study reveals the advantages of reinforcement
learning methods, ensemble strategies, and the surrogate model
applied to the GP framework. The diversity and intelligent
selection of search patterns along with fast adaptation evaluation,
are distinct features that enable RL-GP to be deployed in real-
world enterprise environments.

Index Terms—team formation, reinforcement learning, genetic
programming, intuitionistic fuzzy numbers, ensemble population
strategy, surrogate model

I. INTRODUCTION

IN recent years, the development of numerous modern
enterprises has been characterized by being technology-

intensive, with talents playing a crucial role in facilitating
their growth and success. However, many enterprises fail to
optimize their talent resources when formulating development
strategies, often neglecting the implementation of human re-
source mechanisms such as recruitment and training. This
has resulted in a lack of responsiveness to market demand,
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hindering their progress. Therefore, it is crucial for enterprises
to recognize the importance of human resources in the devel-
opment of their organizations, as they are core resources that
significantly impact competitiveness [1]. A focus on talent
management can assist enterprises in navigating complex
social environments and fierce market competition, ultimately
safeguarding the economic benefits of the enterprise.

The process of selecting and allocating candidates to various
job positions within a team is a crucial aspect of human
resource management. This problem can be called the team
formation problem considering person-job matching (TFP-
PJM). In the job matching problem, decision-makers need
to scientifically allocate candidates to suitable positions ac-
cording to the available information, leveraging the value of
candidates to maximize the match between the two. Effec-
tive matching of candidates with suitable job positions can
enhance job satisfaction and productivity, leading to higher
organizational performance. Conversely, incorrect allocation of
candidates can cause the loss of talent and significant damage
to the enterprise [2]. In addition, many companies need to
form a team to complete a specific project, and the candidates
in the team must cooperate with each other. There may be
differences in the communication willingness among different
candidates, which can affect team efficiency. Therefore, to
ensure the synergistic efficiency of the team, decision-makers
need to consider how to select a certain number of candidates
from a pool of candidates, which not only meets the skills
required to build the team but also maximizes the degree of
collaboration between candidates.

Team formation is an indispensable part of the modern
organization, and many scholars have studied it from different
aspects. The literature [3] provides a comprehensive overview
of the studies conducted on team formation problems and
groups them into two categories: Assignment-based team
formation and community-based team formation. In these
studies, objective functions such as maximizing a cricket
team’s scoring performance [4], maximizing the team gains
[5], minimizing communication costs[6], etc., are considered.
Many studies have different methods for quantifying skill
scores, including precise number score [7], the intuitionistic
fuzzy number [8], probability variables [9], etc. However,
few studies have focused on the effects of both person-job
matching and personnel relations on team efficiency.

The team formation problem is NP-hard [3], and researchers
have used multiple heuristics or meta-heuristics to solve this
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problem, such as genetic algorithm [10], particle swarm algo-
rithm [5], [11], and local search algorithm [12]. There are also
hybrid algorithms that combine several search strategies or
combine several algorithms with each other, focusing on global
and local search performance, achieving the effect of con-
stantly optimizing the formation scheme. However, these algo-
rithms still have some problems such as low search efficiency
and high dependence on algorithm parameters. Additionally,
due to the multiple information about candidates and positions
involved in the TFP-PJM problem, it is difficult to represent
all properties of the problem using a simple rule. Artificially
set heuristic rules may not be readily adjusted, which may
ignore important properties that affect the performance of the
algorithm and the quality of the search solution.

In contrast, genetic programming (GP), as a hyper-heuristic,
can make full use of the characteristics of candidates and
positions in the TFP-PJM problem, and combine them within
specific expressions. During the population evolution, each
individual will combine different low-level rules to form a
hyper-heuristic rule to obtain the full ranking of candidates and
generate a team formation scheme. In addition, many studies
have also explored the integration of genetic programming
with multiple strategies to solve various combinatorial opti-
mization problems, such as the job shop scheduling problem
[13], the uncertain capacitated arc routing problem [14], and
the online resource allocation problem [15]. These successful
experiences can guide future algorithm design. However, tra-
ditional genetic programming is prone to the defect of a single
search mode, which can overemphasize the global search and
cannot effectively mine the local solution space. Moreover,
when applying GP to solve combinatorial optimization prob-
lems like TFP-PJM, it is necessary to evaluate the generated
formation schemes of each individual and check various types
of constraints, which leads to the high computational cost of
fitness evaluation. Therefore, to address the above problems,
we improve the traditional GP and propose a reinforcement
learning-assisted genetic programming algorithm (RL-GP) to
solve the TFP-PJM problem. First, a multi-population ensem-
ble strategy is introduced into the design of the algorithm, and
different search modes are selected to assist population search
by reinforcement learning, breaking the limitation of a single
search mode of GP. A kind of ε-greedy strategy is used for
agent action selection, whereby the action with the largest Q-
value or one of the actions is randomly chosen based on the
relationship between the random number and the threshold.
Furthermore, we adopt agent modeling to quickly compute
the fitness function values using a machine learning model,
thereby reducing computational costs and enhancing algorithm
learning. To improve the accuracy of the surrogate model, the
real model is utilized to assess the individual fitness function
values after a certain number of generations, and the surrogate
model is updated online. The main contributions of this study
are as follows:

1. A 0-1 integer programming model is constructed for
the team formation problem considering person-job matching.
Since the problem of whether a person is matched with
a job is a fuzzy concept, it is suitable to use fuzzy set-
oriented mathematical tools to deal with such a problem. In

the mathematical model, intuitionistic fuzzy numbers are used
to evaluate the personnel to obtain the person-job matching
degree, and the communication matrix is used to calculate
the cooperation degree among the selected personnel. On this
basis, an optimization function aiming at maximizing team
efficiency is proposed. Moreover, the mathematical model
also accounts for constraints such as position restrictions and
personnel ability constraints.

2. A reinforcement learning-assisted genetic programming
algorithm (RL-GP) is proposed. The ensemble population
strategies are used in the algorithm, and search modes are
selected from the ensemble strategies for population search
by reinforcement learning. In addition, the RL-GP algorithm
introduces the surrogate model to expedite fitness computation
and improve algorithmic learning efficiency.

3. Extensive experiments demonstrate the effectiveness of
the improved strategies in the RL-GP algorithm to perform ef-
ficient learning and obtain hyper-heuristic rules superior to the
construction heuristic algorithms. In addition, by comparing
the quality of solutions generated by other search algorithms, it
is proved that the RL-GP algorithm has advantages in solving
the TFP-PJM problem. Experiments also indicate the benefit
of the RL-assisted search mode selection strategy to take
advantage of population search.

The paper is structured as follows: Section II presents
related work on the team formation problem and genetic pro-
gramming in solving the combinatorial optimization problem.
Section III describes the TFP-PJM problem and outlines the
model construction process. Section IV presents the details
related to the reinforcement learning-assisted genetic program-
ming algorithm to address the TFP-PJM problem. Section V
verifies the effectiveness of the proposed algorithm through
experiments. In the last section, we summarize the main work
and propose future research directions.

II. RELATED WORK

This section introduces studies related to the team formation
problem and genetic programming in solving combinatorial
optimization problems.

A. Team Formation Problem

Currently, the team formation problem has attracted a lot of
attention and many scholars have studied the related problems
from different angles, proposed various methods to construct
models, and used different algorithms to solve the problem.
Juárez, J et al.[3] proposed that model building can be divided
into two types, namely assignment-based team formation and
community-based team formation. The model proposed by
Bart H. Boon et al.[16] can be used for soccer teams to select
candidates to form an optimal team and can calculate the
value of the newly added players to the team. Fitzpatrick,
E. L et al.[17] modeled individual instinctive tendencies as
performance indicators for team selection based on the assur-
ance that team members’ skills meet the requirements. Xu et
al.[18] formed a team based on three important characteristics,
which are the professional knowledge level of candidates in
related fields, the diversity of skills, and the willingness to
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cooperate among candidates. Baykasoglu, A et al.[19] calcu-
lated the skilled fitness of candidates by fuzzy scoring method,
and proposed a fuzzy multi-objective optimization model
considering the time and budget constraints of projects and
interpersonal relations among candidates. Liemhetcharat, S et
al.[9] transformed team formation into agents with different
skills collaborating with each other to complete a task, and
proposed a learning algorithm that can learn good synergy
graphs to form teams without prior knowledge.

Many scholars have studied the effect of interpersonal rela-
tionships on team efficiency and proposed different modeling
approaches. Wang et.al.[20] calculated the cost of communi-
cation between candidates through social network graphs and
provided a public platform to implement several algorithms for
team formation. Gutiérrez, J. H et al.[12] used a communica-
tion matrix to set up three possible scenarios of willingness
to cooperate between candidates, and studied the efficiency
formula for multi-project teams, which can provide help to
solve many real-world cases.

Many algorithms have been used to solve the team for-
mation problem. Zhang et al. [11] conducted an evaluation
of personnel cooperation using the MBTI measurement tool
and employed a multi-objective particle swarm optimization
algorithm to achieve a Pareto solution of team formation
alternatives. Strnad, D et al.[21] developed a fuzzy genetic
analysis model, which combined multiple criteria to define a
single composite objective function, and proposed an island
genetic algorithm with mixed crossover to optimize the team
formation scheme. Bhowmik, A et al.[22] modeled the team
formation problem as an unconstrained submodular function
maximization problem, and proposed a stochastic approxima-
tion scheme based on simulated annealing.

B. Genetic Programming for Solving Combinatorial Opti-
mization Problems

In this paper, we use genetic programming to generate a
team formation scheme. GP has the advantage of being a
hyper-heuristic algorithm capable of accommodating a wide
range of state characteristics associated with different com-
binatorial optimization problems. Xu et al.[23] utilized the
genetic programming algorithm to make routing and sequenc-
ing decisions that incorporated three delayed routing strategies
to address the dynamic flexible job shop scheduling problem.
Wang et al.[24] addressed the uncertain capacitated arc routing
problem by employing the genetic programming algorithm and
introducing a niching technique to simplify routing policies,
which improved algorithmic efficiency and performance.

In addition, GP has the ability to integrate multiple strategies
to enhance algorithmic efficiency and quality, which has been
applied in several fields. Zhang et al.[25] combined genetic
programming with a surrogate model to solve the dynamic
flexible job shop scheduling problem, which improved the
quality of the scheduling heuristic algorithm by making full
use of the knowledge learned from different scheduling tasks.
Ardeh et al.[14] investigated the uncertain capacitated arc
routing problem and introduced knowledge transfer through
genetic programming, leading to an improvement in the

algorithm search efficiency by limiting the exploration to
unexplored domains.

To summarize, when studying the team formation problem,
few studies have quantified both the two metrics of person-job
matching and the level of cooperation between team members.
This paper seeks to address this gap by simultaneously consid-
ering the impact of these two dimensions on team efficiency,
in order to enhance the accuracy of the model and solution
scheme. Many algorithms for solving team formation problems
require the manual design of heuristic rules, which has certain
limitations. While GP has the advantage of being able to
automatically select low-level rules for combination, thereby
reducing the need for specialized domain knowledge. Addi-
tionally, no research has been conducted on the combination
of genetic programming and reinforcement learning to solve
the problem.

III. MODEL

This section describes the TFP-PJM problem in detail and
introduces the variables and symbols, objective functions, and
the setting of constraints involved in the model.

A. Problem Description

How to assemble a team is an important decision for any
company when embarking on a new project. There are various
factors that should be considered when making the decision.
First, the skill match degree of the candidate is an important
factor, because, in the event that an employee lacks the
necessary skills, the project may be delayed or even rendered
impossible to complete. There is a need to select those from
the candidate pool whose skills match the requirements and
who are capable of performing the job. Second, effective
communication and collaboration are essential elements for
achieving success in a team-based project. The efficacy of
communication among team members has a direct impact
on the project’s timeline and quality. Consequently, careful
consideration should be given to selecting candidates with
strong communication skills to ensure smooth partnerships
with other team members [26]. Overall, only with a combi-
nation of many considerations can a company assemble an
efficient and collaborative team that provides strong support
for the project’s success [27].

When a company needs to undertake a new project, the
TFP-PJM problem emphasizes the importance of selecting
candidates with different skills and placing them in appropriate
positions that meet the skill requirements of their respective
positions. The assembled team must work together in a har-
monious atmosphere to ensure optimal productivity. Skill as-
sessment accuracy is also important in the TFP-PJM problem.
Some skills may be overemphasized, while others may be
overlooked. Therefore, companies need to clarify the weight
of skills required for different positions based on project needs
and job content, and then assess the candidates’ skills on this
basis. In addition, as shown in Figure 1, certain tasks may
necessitate the involvement of multiple members with similar
skills, and the skills possessed by different candidates may
overlap, just to be able to solve this problem. However, due
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Fig. 1: A team of members with different skills

to various factors such as personality and cultural differences,
the willingness to communicate among candidates is different.
ln general, there are candidates who possess a cooperative
mindset, those who exhibit a neutral attitude, and those who
are less inclined to cooperate [12]. When team members pos-
sess a strong willingness to communicate, the team’s overall
efficiency naturally increases.

What needs to be decided in the model is how to select
candidates from the available pool and assign them to various
team positions. This decision can not only meet the skill
requirements of different positions but also meet the skill
requirements set by the new project. At the same time,
members can cooperate efficiently to maximize the team’s
efficiency.

B. Variables and Symbols

C: the set of candidates, C = {c1, c2, ..., c|C|}, ci stands
for the candidate i;
S: the set of skills for all candidates, S = {s1, s2, ..., s|S|},

sk stands for the skill k;
T : the set of skills required for the task, T = {sm, ..., sn} ⊆

S;
S(ci): the set of skills possessed by candidate i, S(ci) ⊂ S;
TS(ci): the set of skills required for task T , which is

possessed by candidate i, TS(ci) ⊂ S;
C(sk): the set of candidates with skill k, C(sk) ⊂ V ;
n(sk): the required number of members with skill k to

complete task T ;
POS: the set of positions in the team, POS =

{pos1, pos2, ..., pos|POS|}, posj stands for the position j;
RS(posj): the set of skills required for position j,

RS(posj) = {sy, ..., sz}, RS(posj) ⊆ S;
W : the position assessment competency weight matrix, wjl

indicates the assessment weight of position j for the lth
competence dimension,

∑|L|
l=1 wjl = 1,∀j = 1, 2, ..., |POS|;

A: the set of intuitionistic fuzzy numbers, A = {A1, A2},
A1 ∪ A2 = A, A1 ∩ A2 = ∅, A = {(µijl, vijl)

∣∣∣i =

1, 2, ..., |C|; j = 1, 2, ..., |POS|; l = 1, 2, ..., |L|}, A1 =
{µijl

∣∣i = 1, 2, ..., |C|; j = 1, 2, ..., |POS|; l = 1, 2, ..., |L|},

A2 = {vijl
∣∣i = 1, 2, ..., |C|; j = 1, 2, ..., |POS|; l =

1, 2, ..., |L|}, αijl =< µijl, vijl >, αijl denotes the intuitive
fuzzy number score of candidate i on the lth competence di-
mension of position j, where µijl, vijl stands for membership
and non-membership respectively;
ezij : the match score of candidate i with position j;
R: the personnel relationship matrix, the size of the matrix

is |C| × |C|, rii′ indicates the willingness of candidates i and
i
′

to communicate. The value of rii′ is shown as follows:

r
′

ii =

 −1 unwilling to cooperate
0 neutral
1 willing to cooperate

(1)

γ: the communication efficiency of the team.
Decision Variables:
xij : whether candidate i is assigned to position j. The value

of xij is shown as follows:

xij =

{
1 if the candidate is chosen
0 else (2)

C. Model

To better focus on the characteristics of the team formation
problem itself, we make the following assumptions:

Assumptions:
1. Each candidate has at least one skill required by the team,

and all candidates are likely to be selected.
2. There are more candidates than required team members.
3. Once the team is formed, members will not leave or be

replaced during the project.
4. The skills required for the team and each position will

not change.
5. The number of team positions is determined before

selecting candidates, and no additional positions will be added
or eliminated.

6. Each candidate can only use their specific skills to
complete tasks.

7. The willingness of candidates to communicate with each
other is predetermined and remains consistent throughout the
project.

8. Some skills required by the team need multiple people
with these skills to work together, while all skills required by
each position need only one person to complete [12].

The traditional person-job matching evaluation methods
generally use precise numbers to express the indicators that
affect the matching results, but due to the complexity and
uncertainty of the actual matching problems, it is difficult to
quantify the index values accurately. In order to arrange the
selected candidates to the most suitable positions and give
full play to their respective abilities, namely to achieve the
maximum person-job matching, the intuitionistic fuzzy set is
introduced into the model construction. First, we introduce the
concept and definition of IFS:

Assuming that X is a non-empty classical set, the IFS A
defined on X can be expressed as:

A = {< x, µA(x), vA (x) , hA (x) > |x ∈ X} (3)
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where µA(x), vA(x) and hA(x) denotes the membership, non-
membership and hesitant functions respectively [28]. IFN is
the essential element of the IFS theory, which can be easier
expressed as α =

〈
µ, v
〉
, and µ, v, µ+ v ∈ [0, 1].

The model introduces the IFNs into the process of candidate
evaluation. Under the evaluation dimension of each position,
decision-makers make 0-1 decisions to judge whether a can-
didate can meet the requirements of a specific position or they
can choose to abstain. After the evaluation, the intuitionistic
fuzzy matrix of multiple decision-makers will be obtained.
Since the membership function maybe 0 in the decision-
making process, refer to [29], the intuitionistic fuzzy power
interactive weighted average (IFPIWA) operator is used in the
model to integrate the fuzzy information by setting different
weights to each position’s assessment dimensions to obtain
the aggregated IFNs and the person-job matching score. The
specific calculation formulas are shown as follows:

d(αijl, αijl′) =
1

2
(|µijl − µijl′ |+ |vijl − vijl′ |) (4)

sup (αijl, αijl′) = 1− d(αijl, αijl′) (5)

T (αijl) =

|L|∑
l′=1,l′ 6=l

wjl′ sup
(
αijl′ , αijl

)
, l = 1, 2, ..., |L|

(6)

ρijl =
wjl(1 + T (αijl))∑|L|
l=1 wjl(|1 + T (αijl))

(7)

Here, we give an example to facilitate the understanding
of the definition. Figure 2 shows the skill requirements of
position pos1 and the skill attributes possessed by candidate c1.
Suppose that three dimensions are set for the position, namely
education level, programming ability, and leadership ability,
with weights of 0.4,0.35 and 0.25 respectively, corresponding
to the values of w11, w12, w13. After scoring by experts, the
candidate’s intuitive fuzzy numbers in each dimension of the
position will be obtained, which are α111 =< 0.4, 0.6 >
,α112 =< 0.6, 0.4 >,α113 =< 0.8, 0.2 >. Through the
information, the person-job matching score can be calculated.
Firstly, the intuitionistic fuzzy Hamming distance of the three
IFNs can be calculated.

d(α111, α112) =
1

2
(|0.4− 0.6|+ |0.6− 0.4|) = 0.2 (9)

d(α111, α113) =
1

2
(|0.4− 0.8|+ |0.6− 0.2|) = 0.4 (10)

d(α112, α113) =
1

2
(|0.6− 0.8|+ |0.4− 0.2|) = 0.2 (11)

Then, calculate the support between them.

sup (α111, α112) = 1− 0.2 = 0.8 (12)

sup (α111, α113) = 0.6, sup (α112, α113) = 0.8 (13)

T (α111) = 0.43, T (α112) = T (α113) = 0.52 (14)

ρ111 =
w11(1 + T (α111))∑3
l=1 w1l(1 + T (α11l))

= 0.39 (15)

ρ112 =
w12(1 + T (α112))∑3
l=1 w1l(1 + T (α11l))

= 0.36 (16)

ρ113 =
w13(1 + T (α113))∑3
l=1 w1l(1 + T (α11l))

= 0.26 (17)

IFIWA(α111, α112, α113) =< 0.61, 0.39 > (18)

Finally, the matching score between the candidate c1 and
the position pos1 is calculated to be ez11 = 0.22.

In addition, the efficacy of communication within the team
is influenced by the willingness to communicate among the
members. Refer to [12], the communication matrix is used
to express the levels of cooperation among members. This
matrix comprises values of 1, 0, or -1, indicating that two
people are willing to collaborate, have a neutral attitude, or
are not inclined to cooperate, respectively. A formulation for
the overall communication efficiency of the team is designed
based on the communication matrix, which is calculated as
follows:

γ = a

(
b+

∑
i,i′∈C rii′ · xij · xi′j′
[
∑
sk∈T n(sk)]2

)
(19)

The communication efficiency of a team is obtained by sum-
ming up the communication willingness of all team members.
If the candidate i and i′ are willing to cooperate, and both
are selected into the team and assigned to different positions,
the numerator in the formula will increase by 1, thus the
communication efficiency of the team will be improved. In
this problem, we set a = 1

2 , b = 3, converting the interval of
γ from [−1, 1] to [1, 2], which is convenient for the subsequent
setting of the objective function [12].

The goal of the model is to maximize team productivity by
carefully selecting suitable candidates and placing them in the
right positions. This requires considering both the person-job
matching score and the communication efficiency score, and
the objective function is shown below:

Objective Function:

max
∑
i∈C

∑
j∈POS

ezij · xij · γ (20)

where ezij denotes the match score of the selected candidates
and their respective positions, and γ denotes the communica-
tion efficiency of the personnel in the team, which are two
important factors affecting the efficiency of the whole team.
The interval value of γ makes it possible to multiply the team
communication efficiency and the person-job matching score
to express the team productivity. Specifically, the larger the
calculated value of communication efficiency, the larger the
value of team productivity obtained by multiplying it with the
person-job matching score.

The model mainly considers the job constraints and the skill
constraints of the personnel, which are expressed as follows:

Constraints:
1. Each candidate is to be assigned to no more than one

post.
|POS|∑
j=1

xij ≤ 1,∀i = 1, 2, ..., |C| (21)
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IFPIWA(αij1, αij2, . . . , αij|L|) =

1−
|L|∏
l=1

(1− µijl)ρijl ,
|L|∏
l=1

(1− µijl)ρijl −
|L|∏
l=1

(1− (µijl + vijl))
ρiji

 (8)

Fig. 2: A person-job fit example

2. There is precisely one individual assigned to each posi-
tion.

|C|∑
i=1

xij = 1,∀j = 1, 2, ..., |POS| (22)

3. The team has the requisite number of members for each
necessary skill. ∑

ci∈C(sk)

xij ≥ |n(sk)|,∀sk ∈ T (23)

4. The set of skills possessed by all chosen candidates is
not less than the skills required by the team.∑

ci∈C

∑
m∈TS(ci)

Sm · xij ≥ |T | (24)

5. The selected candidates meet the skill requirements of
the corresponding positions.

(1− xij) ·RS (posj) ≤ S(ci),∀i ∈ C, j ∈ POS (25)

6. The range of values of the decision variable.

xij ∈ {0, 1},∀i = 1, 2, ..., |C|, j = 1, 2, ..., |POS| (26)

IV. THE PROPOSED METHOD

This section introduces the overall framework of RL-GP
and the related improvement strategies.

A. Framework

The TFP-PJM problem has a large number of candidate
and job characteristics, which is difficult to describe them
simultaneously using a simple rule. In contrast, GP can find an
optimal solution by combining different rules by individuals
in the population and evolving iteratively [30]. In addition, to
break the limitation of a single search pattern in GP, ensemble

population strategies are implemented, with reinforcement
learning employed to select search patterns from the ensemble
population strategies to support the population search. Fur-
thermore, the surrogate model is used in the individual fitness
evaluation phase to improve the learning speed of RL-GP.

The flowchart of the proposed algorithm is shown in Figure
3. We analyze the TFP-PJM problem features and select
some low-level heuristic rules, which serve as the terminal
set of the problem, and select some basic operations that
conform to constitute the function set. The representation of
individuals in the GP will combine the terminal set and the
function set into different priority functions, which are used to
rank candidates, resulting in the corresponding team formation
schemes. After the initialization of the algorithm, the genetic
programming framework is used to iterate continuously in
search of an ideal team formation solution. In the RL-GP
population evolution process, the algorithm adopts ensemble
population strategies and the reinforcement learning method.
Specifically, four population search modes are set in the
algorithm. They are respectively the population of size N
(denoted as P1), the single elite individual population of size
N (denoted as P2), the double elite individuals’ population of
size 2 (denoted as P3), and the population with size N + 2
composed of P1 and P3 (denoted as P4). The above four
search modes are used as actions and are selected by the agent
before each generation of population iteration search. The
reinforcement learning method involves the use of the Q-table
to record the state of the agent, and the ε-greedy strategy for
action selection [31]. The ε-greedy strategy selects the action
with the largest Q-value or selects a random kind of action
at a particular moment by comparing random numbers and
the parameter. This strategy fully exploits search information
while simultaneously exploring new actions to enhance the
algorithm’s exploration performance.

After determining the search mode, the RL-GP popula-
tion is evolved through selection, crossover, and mutation
operations to generate the offspring population. The newly
derived population evaluates the fitness function values using
the surrogate model, and subsequently, the Q-table will be
updated based on their optimization performance. To facilitate
a prompt assessment of individual fitness values, the K-nearest
neighbors (KNN) model is implemented as the surrogate
model [32]. After searching a certain number of generations,
the algorithm will select the best-performing individual and
determine the team formation scheme generated by it as the
final scheme.

After introducing the algorithm framework of RL-GP, some
methods and strategies need further explanation. The first part
of this section introduces the individual representation in RL-
GP and its corresponding process of encoding and decoding.
The reinforcement learning method will be given in the second
part. Subsequently, the ensemble population strategies will be
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Fig. 3: The flowchart of RL-GP

described in detail in the third part. The fourth part elaborates
on the construction of the surrogate model, while the final part
introduces the learning process of RL-GP.

B. Individual Representation

Unlike the encoding of other evolutionary algorithms, GP
encodes the chromosomes of individuals with the terminal set
and the function set, which comprise values and operators,
respectively [33]. The terminal set consists of the relevant
state features of the TFP-PJM problem, as shown in Table
I. Our RL-GP uses a classical tree structure. The function
set’s operators serve as non-terminal nodes of the tree. The
individual representation process is to combine several state
features of the TFP-PJM problem in a certain order to obtain
a priority function. The priority function allows all candidates
to be ranked and selected one by one in order to form the
project team. To select suitable positions for the candidates, the
heuristic approach will select the highest matching positions
among the available positions.

Fig. 4: An example of an individual structure in RL-GP

Figure 4 shows an example of an individual structure in
RL-GP. It is a priority function a ∗ (b + c) consisting of
three terminals(e.g., a, b, and c) and two functions(e.g., *
and +). Substituting the corresponding feature attributes of all
candidates into the priority function will obtain the respective
priority value. By ranking, the candidate with the highest
priority value is selected to join the team.

In the process of decoding, the characteristic attributes of
each candidate are substituted into the individual combina-
tion rule to get the ranking of different candidates, and the
candidate with the highest priority is selected. After that, the

match scores of this candidate and all positions are calculated
using intuitionistic fuzzy numbers. Based on the calculation
results, the candidate will be placed in the position with
the highest match score. After arranging the first member,
the low-level heuristic rule within the individual is modified,
resulting in a new candidate priority ranking, and the next
member is selected from the remaining candidates according
to the updated ranking. The newly selected candidate is then
placed in the position with the highest match score among
the available positions. The prioritization and job selection
process is repeated until all requirements for team formation
are satisfied. In the individual fitness evaluation phase, RL-
GP will use the surrogate model to estimate the individuals’
fitness values and update the agent’s status value based on
the reward and search performance. The following parts will
describe the ensemble of different population search strategies
in reinforcement learning, as well as the specific process of
using reinforcement learning to guide the evolution of genetic
programming populations.

C. Reinforcement Learning Method
In the proposed algorithm, we use reinforcement learning

methods to improve the efficiency of algorithmic population
search by selecting suitable search modes from ensemble pop-
ulation strategies. Reinforcement learning involves a learning
process in which an agent interacts with its environment, ob-
taining feedback signals and rewards to optimize its decision-
making process and maximize the cumulative reward [34]. The
proposed algorithm employs a simple structured Q-learning
method in reinforcement learning, where the agent’s state is
recorded in the Q-table. Population search is executed based on
the selected search mode, and the agent’s reward is calculated
based on the new rules for team formation discovered by
the search and recorded in the Q-table to guide subsequent
decisions. When selecting the search pattern, the ε-greedy
strategy is introduced, augmenting the algorithm’s exploration
capability by utilizing existing information while continuing
to explore untried actions.

Figure 5 reflects the principle of RL-GP population evolu-
tion in collaboration with Q-learning, including two critical
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TABLE I: Terminal Set Table

Notation Description

NPT The number of posts set by the team
RNP Remaining number of posts
SC The number of skills within a candidate
SCN The number of skills within a candidate that the team needs
ANS The average number of skills of the candidates
NSR The number of skills required by the team
NCP The number of candidates who possess a skill required by the team
NCR The number of candidates for a required skill by the team
SCW The sum of the scores for communication willingness of existing team members
SMP The sum of the scores for the arranged person-job match
WEC The weight of a post’s evaluation of a competency indicator
RAND A random number between 0 and 1

Fig. 5: Dataflow between the Q-learning and GP

processes. Reinforcement learning assists the RL-GP popu-
lation to determine the search mode, which can make the
population more focused on possible optimal solutions and
thereby improve search efficiency and quality. At the same
time, the evolutionary results of the GP population are fed
back to the agent to update the Q-table, further directing sub-
sequent search decisions for superior search results [35]. The
two processes continuously interact in a cycle to enable the
algorithm to find the optimal rules and get high-quality team
formation rules. In this process, the parent population evolves
with a specific search mode and generates the offspring
population through evolutionary operators such as crossover
and mutation. The best individual in the offspring population
outputs a new solution, corresponding to the best fitness value
of the contemporary generation. The agent compares the best
individual fitness values of two adjacent generations, calculates
the reward for choosing a search mode in this state, and
updates the Q-table. As it keeps trying and updating, the agent
makes optimal decisions through the Q-table combined with
the ε-greedy strategy to guide the population evolution more
efficiently. The results of each evolutionary generation are
evaluated and the search strategy is further optimized until
an approximate optimal solution is found or a predetermined
number of iterations is reached. This interactive algorithm is
designed to utilize the information obtained from the popula-
tion search to find an optimal strategy.

The RL-GP population search is only related to the current
state and satisfies the conditions for constructing Markov
Decision Processes (MDP) [36]. An MDP consists of four
components: state, action, reward, and value function. The
RL-GP algorithm associates the state of the agent with the
improvement of the best individual fitness value for each

generation of the population. This association can be cate-
gorized into two types: those with improvement and those
without improvement. The action setting in RL-GP contains
four population search modes, which are integrated into the
population strategy. After each generation of population evolu-
tion, the best-performing individual is selected, and the reward
is calculated by the difference in individual fitness values at
different time points. This calculation of Rt adheres to the
following relationship:

Rt = f∗t (St, At)− f∗t−1(St−1, At−1) (27)

where f∗t (St, At) represents the fitness value of the best
individual obtained by population evolution after the agent
chooses the search mode A for RL-GP population in the state
S at the time point t. The difference between it and the best
individual fitness value at the time point t−1 is the immediate
reward Rt at the time point t.

During the population search process, the agent selects dif-
ferent search modes based on the current state and calculates
the reward according to the search performance. The agent
stores the calculation results in the Q-table and makes the
next action selection according to the new state. The Q-value
is updated by the following formula:

Qt+1(St, At) = Qt(St, At) + α[Rt+

γmax
a∈A

Q(St+1, a)−Q(St, At)]
(28)

There are two adjustable parameters in the function, α rep-
resents the learning rate and γ represents the discount factor.
The updating process is a dynamic planning method based on
the Bellman equation, known as the Bellman Equation [37].
This equation provides the optimal decision value based on the
current state, which is equivalent to the expected value of the
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optimal decision value in the subsequent state, added to the
immediate reward obtained in the current state. As can be seen
from Figure 6, the next state is determined after the RL-GP
population in the current state selects a specific search mode.
The max

a∈A
Q(St+1, a) in the formula refers to the maximum Q

value attainable in all actions in the next state.
In the RL-GP algorithm, the agent realizes a ε-greedy

strategy for action selection and picks the appropriate search
mode. This strategy involves setting a constant threshold ε that
takes values from 0 to 1 to control the degree of randomness.
The ε-greedy strategy is employed when ε equals 0, which
means that the action is selected exactly according to the
currently known optimal strategy, called the ε-greedy strategy.
Conversely, when ε is 1, it represents a completely random
choice of action, which is called a completely random strategy.
For other values of ε, the agent generates a random number
from 0 to 1 before each decision. When the random number is
less than ε, the agent will randomly select one of all population
search strategies; conversely, the population strategy with the
highest Q-value will be selected for the search. The pseudo-
code for the ε-greedy strategy is shown in Algorithm 1.

Algorithm 1: ε-greedy Strategy
Input: state St, action set A, Q-table Q, parameter ε.
Output: action a

1 rand←Generate a random number between 0 to 1;
2 if ε ≤ rand then
3 a←Select an action randomly from the action set

A;
4 else
5 a←Select the action with the largest Q-value from

Q-table Q based on the state St;

D. Ensemble Population Strategy

Population search is a widely used global optimiza-
tion method that includes various meta-heuristic and hyper-
heuristic searches, including genetic programming. Compared
with traditional individual search, it can reduce the probability
of the algorithm converging to a local optimum and improve
the search efficiency of the algorithm through initializing a
population of potential problem solutions, which undergoes
continuous iterations and co-evolution.

However, for genetic programming, it is more difficult to
find high-quality solutions when solving complex combina-
torial optimization problems using only a single population
search model [38]. To improve the search performance of the
algorithm, an ensemble population strategy is employed in RL-
GP [39]. Specifically, before the start of each generation of
population search, the algorithm will use the reinforcement
learning method to select one of the population search modes
for the contemporary search. The ensemble of the four pop-
ulation strategies in the RL-GP algorithm is shown in Figure
7.
• P1: (The population size of common population is

N .) This is the most common form of population evolution

approach used in the genetic programming algorithm for
initialization. This approach generates an offspring population
through evolutionary operations such as selection, crossover,
and mutation.
• P2: (The population size of single elite individual popula-

tion is N .) To expedite the convergence of RL-GP, we use the
global best individual to randomly replace an individual in P1

to form P2. After each generation of population evolution, we
compare the fitness of the contemporary best individual with
the global elite individual. If the best individual outperforms
the elite individual, we use the new elite individual to replace
the elite individual in the original P2 population.
• P3: (The population size of double elite individuals

population is 2.) The P3 population consists of the global
best individual and the best individual from the preceding
generation. This population search mode is similar to the
neighborhood search and has the potential to mine high-quality
solutions in the local solution space.
• P4: (The population size of common population + double

elite individuals population is N + 2.) The P4 population
consists of P1 and P3 together. Such a population strikes a
balance between global and local search abilities. Accordingly,
this population requires increased computational resources for
the algorithm search.

The four population search strategies are integrated into
the genetic programming framework and selected using the
reinforcement learning method, making the RL-GP algorithm
highly adaptive in its search capabilities. The agent can
dynamically adjust the search strategy according to the current
search performance to improve the effectiveness of the search,
thus increasing the chances of the RL-GP algorithm finding
the optimal solution.

E. Surrogate Model

Since the complexity of the TFP-PJM problem is NP-
hard, generating a team formation scheme requires complex
constraints checking. The process of constraint evaluation and
verification is computationally intensive and can significantly
affect the learning efficiency of the algorithm [25]. As the size
of the problem increases, the learning time of the algorithm
also increases proportionately. In view of the computation-
ally expensive nature of the fitness function evaluation, it is
essential to identify an alternative approach. The approach
of surrogate modeling then provides a solution idea for fast
evaluation of individual fitness functions. Refer to [32], we
use the k-Nearest Neighbor (KNN) model to approximate the
fitness function values. This simple machine learning model
computes the average of the fitness values of the k nearest
individuals to a new individual by calculating the distances
between individuals, thus estimating the predicted value of
the new individual. Such an adaptation evaluation method has
low time complexity and can speed up the iterative population
search process.

Since the RL-GP algorithm uses an individual representation
that differs from other population-based search algorithms, the
tree structure does not allow the genotype to be directly input
into the surrogate model. Therefore, refer to [32], we generate
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Fig. 6: Decision-making Process of Q-learning Method

Fig. 7: Four Search Modes

a decision vector by using the reference rule and other rules,
where the reference rule entails an employee’s suitability for
a job, ranked in descending order, and the other rules stem
from RL-GP learning. To construct the decision vector value
for each job dimension, the candidates’ ranking results are
obtained using the reference rule and the rules obtained by
RL-GP learning. After that, the candidate whose ranking is the
first in the learned rule is used, and the ranking result under
the reference rule is taken as the decision vector value of this
dimension. After generating the decision vectors, denoted as
dA and dB, using the rules A and B obtained through RL-GP
learning, the distance between the two vectors, with a number
i of positions, is calculated as follows:

D(dA,dB) =

√√√√ k∑
i=1

(
dAi − dBi

)2 (29)

The distance between the predicted individual and other in-
dividuals in the training set is calculated by the KNN model. k
individuals closest to the individual are found, and the average
of the fitness values is calculated to serve as the predicted
value of the individual. For the selection of k, it is necessary
to consider the number of actual individuals in the training set,
which can be modified flexibly in the operation of the model
[40]. To ensure the prediction effectiveness and computational
efficiency of the KNN model, the threshold µ is used to decide
whether to update the surrogate model. Specifically, at inter-
vals of every µ generation, RL-GP evaluates the performance
of the best individuals found in each previous generation of
search through the real evaluation model. These individuals,
along with their corresponding real fitness function values, are
subsequently appended to the training set, and the KNN model
is updated. Through online learning, the accuracy of the model
prediction can be continuously improved to ensure the quality

of the best individual ultimately produced by the algorithm.

F. Learning Process of RL-GP

The framework and some strategies in RL-GP are intro-
duced in the previous parts. In this part, the learning process
of RL-GP is given in Algorithm 2.

Algorithm 2: Learning Process of the RL-GP
Input: population size Np, learning rate α, discount

factor γ, action set A, ε, k, threshold µ
Output: gobal best indi.

1 P ←Initialize the population;
2 Initialize the surrogate model;
3 Initialize Q-table and set t← 0;
4 Set iter ← 0;
5 while the termination criteria are not met do
6 a← Select the search mode in IV-D using

ε-greedy strategy in Algorithm 1;
7 P ← Adjust the population composition according

to the action a;
8 Select individual from P ;
9 P ′ ← Population evolution by using crossover and

mutation operators (P );
10 Evaluate fitness using surrogate model in IV-E;
11 Ω←Record the best individual in the offspring

generation;
12 Rt ←Calculate reward by using Eq. (27);
13 Qt+1 ←Calculate the Q-value and update the

Q-table by using Eq. (28);
14 if localbest ≥ gobalbest then
15 gobalbest ← localbest;
16 gobal best indi← local best indi;

17 if mod (iter, µ) == 0 then
18 f ′ ← Evaluate fitness using model in III (Ω);
19 Update the surrogate model (f ′);
20 Ω← [ ];
21 iter ← 0;

22 t← t+ 1;
23 iter ← iter + 1

As shown in Algorithm 2, after RL-GP completes the
individual fitness evaluation using the surrogate model, the
highest-performing individuals within the population are
recorded (Line 9). These recorded individuals are subsequently
utilized to calculate the real fitness function (Line 16) in order
to update the surrogate model (Line 17).
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V. EXPERIMENT

In this section, the experimental setup, experimental results,
and discussion will be presented.

A. Experimental Setup

Experimental environment: In this section, a series of ex-
periments are used to verify the effectiveness of the RL-GP
algorithm. All algorithms are performed on a Core(TM) i5-
8265U CPU 1.60GHz, Windows 10 OS computer with Python
3.11 code environment.

Experimental scenarios: There is no public benchmark for
the TFP-PJM problem, so we use a random generation ap-
proach to obtain scenarios of different scales. To facilitate the
representation of diverse instances, we adopt the form of “P-
ID” to represent instances, where “P” represents the number
of jobs and “ID” represents the internal number of the same
job scale.

Comparison algorithms: To verify the solution performance
of the RL-GP algorithm, various GP algorithms, construction
heuristics, and search algorithms are used in the experi-
ments. We choose traditional GP (denoted as BGP), GP using
an external repository (denoted as GP-E), two constructive
heuristics algorithms (denoted as CH1 and CH2 respectively),
improved genetic algorithm (IGA) [41], and variable neighbor-
hood search algorithm (VNS) [42] as comparison algorithms.
The constructive heuristics algorithms CH1 and CH2 are
employed to generate preferences for candidate selection based
on different criteria. CH1 generates a preference order for
selecting candidates, ranked from highest to lowest in terms
of the number of skills candidates meet on the team. CH2
generated a preference order for selecting candidates based on
the person-job match score, also ranked in descending order.

Algorithm parameter settings: After cross-validation experi-
ments of the parameters, we make the following settings. In the
RL-GP, the population size is set to 100, the maximum number
of iterations is set to 100, the initialization method is ramped-
half-and-half, the crossover is the two-point crossover, the
mutation is the single-point mutation, the crossover probability
is set to 0.9, the mutation probability is set to 0.1, the discount
factor is set to 0.9, and the learning rate is set to 0.01, k is set
to 5. Function set contains {+,−, ∗, /, sin, cos,max,min}. It
is worth noting that the division operation returns a result of
1 using the protection policy when the denominator is 0. The
other GP algorithms’ parameters are set the same as RL-GP,
and the search algorithms’ parameters are set consistent with
the related literature.

Evaluation metrics: For the learning process, the length of
the learning time of the algorithms at different instance sizes
can reflect the learning speed of the algorithms. The value of
the objective function is used to evaluate the performance of
the GP algorithm in the testing process. As for other search
algorithms, the maximum value (denoted as Max) and the
average value (denoted as Ave) of 10 runs are taken due
to the uncertainty of the search process. In addition, the
percentage of the difference between the proposed algorithm
and the comparison algorithms (denoted as Gap) is also used

to evaluate the performance of the algorithm in producing the
hyper-heuristic rule.

B. Experimental Results

The experimental results contain comparisons between RL-
GP and other GPs, construction heuristics algorithms, and
other search algorithms, respectively. Then, the effect of the
learned programming heuristic, the ratio between posts and
skills on the performance of the algorithm is also analyzed.

1) Comparisons with other GPs: As an improved form of
GP, whether the adopted improvement strategy can play a
positive role in RL-GP performance in terms of both time and
solution quality needs to be verified experimentally. First, the
learning times used by different GP algorithms are compared.
As shown in Figure 8, the learning time consumed by RL-
GP is significantly shorter than that of the GP and GP-E
algorithms, which reflects that the surrogate model used in the
algorithm can significantly reduce the computational cost of
evaluating individual fitness values. The usefulness of such an
adaptation evaluation method is also more obvious as the prob-
lem size increases. For example, the number of candidates in a
100-job instance is twice as many as the number of candidates
in a 50-job instance. Select a subset of these candidates to form
a team, and the increased number of judgments of constraints
will make each solution generation take longer. However, the
use of the surrogate model to compute the fitness function
values does not result in significant additional computation as
the problem size increases. It is worth mentioning that the
surrogate model calculation is not a complete substitute for
the real solution evaluation method. Therefore, after a certain
number of generations, RL-GP will calculate the real fitness
function values and updates the optimal solution.

After that, the performance of RL-GP and two other com-
parable GP algorithms for problem-solving is compared. As
shown in Table II, RL-GP can obtain a higher matching
solution than the BGP and GP-E, where TE denotes the total
efficiency. In RL-GP, the reinforcement learning method to
select the population search mode can help the algorithm to ad-
just the search strategy according to the information obtained
during the search. If the problem solution space is extremely
complex, the combined search methods make it easier for the
algorithm to balance exploration and exploitation. The use of
elite individuals in the population is more likely to drive the
search in a good direction. Additionally, the GP-E outperforms
the BGP in the majority of cases.

2) Comparisons with the construction heuristic algorithms:
To evaluate the performance of the heuristic rules derived
from the training of the RL-GP algorithm in solving the
TFP-PJM problem, two construction heuristics are used as
benchmarks for comparison. Both the construction heuristic
algorithms and the RL-GP algorithm can quickly obtain a
team formation solution. This section focuses on evaluating the
solution performance of the algorithms based on the overall
efficiency of the solution. As shown in Figure 9, the RL-
GP algorithm can obtain team solutions that surpass those
of the CH1 and CH2 algorithms. The obvious gap between
the algorithms reflects the efficacy of population iterative
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(a) Boxplot of the learning time for instances
with 25 positions
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(b) Boxplot of the learning time for instances
with 50 positions
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(c) Boxplot of the learning time for instances
with 75 positions
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(d) Boxplot of the learning time for instances
with 100 positions

R L - G P B G P G P - E
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0
2 0 0 0
2 2 0 0

Ti
me

(e) Boxplot of the learning time for instances
with 125 positions
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(f) Boxplot of the learning time for instances
with 150 positions
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(g) Boxplot of the learning time for instances
with 175 positions
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(h) Boxplot of the learning time for instances
with 200 positions
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(i) Boxplot of the learning time for instances
with 225 positions

Fig. 8: Boxplots of the learning time for instances with different scale positions

search in finding the appropriate strategy. The use of the
surrogate model to evaluate the fitness function values of RL-
GP inevitably results in the omission of some individuals who
can potentially obtain a high-matching solution. However, for
complex combinatorial optimization problems like TFP-PJM,
it is imperative to strike a balance between learning time and
solution accuracy. Therefore, for solving such problems, there
is no guarantee of an optimal solution. Instead, a high-quality
solution that is not the best is equally acceptable.

3) Comparisons with other search algorithms: To further
enhance the persuasiveness of the algorithm’s solution per-
formance, we also conduct a comparison with two search
algorithms. As shown in Table III, IGA can find efficient teams
in some instances after spending a lot of time. Meanwhile, RL-
GP outperforms the two search algorithms in certain instances,
with equivalent or superior team formation solutions. Addi-
tionally, VNS performs worse than IGA. Through learning,

RL-GP gains the heuristic of not only having the generaliza-
tion ability but also building an efficient team. The learning
process is made more efficient by the reinforcement learning
method, where the state of each search mode determines the
action to be used in the subsequent learning process. The
information obtained by the algorithm during the learning
process can guide the population to find the formation strategy
that is more likely to obtain high-efficiency values.

4) Learned scheduling heuristics: This section presents
some learned heuristic rules for instances of size 100 and
200. Figure 10 and Figure 11 represent the well-performing
heuristic for forming teams of 100 and 200 posts, respectively.
It can be seen that the heuristics that generate efficient team
solutions at two instance sizes exist partly similar structures.
This shows that the agent tends to adopt similar actions during
the search process based on the state information, and the
individual evolution conducted in this manner also moves
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TABLE II: Comparison results of RL-GP with BGP and GP-E

Instance RL-GP BGP GP-E

TE Gap (%) TE Gap (%)

25-1 14.50 14.50 0.00 14.50 0.00
25-2 14.75 14.75 0.00 14.75 0.00
25-3 14.50 13.86 -4.43 13.86 -4.43
50-1 25.02 24.88 -0.56 25.02 0.00
50-2 24.65 24.64 -0.05 24.52 -0.56
50-3 25.02 25.04 0.11 24.93 -0.36
75-1 37.66 36.64 -2.72 36.73 -2.49
75-2 37.66 36.32 -3.56 36.53 -3.02
75-3 36.86 35.88 -2.68 35.88 -2.68
100-1 47.55 47.55 0.00 47.55 0.00
100-2 47.48 46.89 -1.23 47.79 0.66
100-3 47.51 47.36 -0.31 46.61 -1.89
125-1 59.16 57.68 -2.50 59.08 -0.15
125-2 58.68 57.41 -2.17 58.64 -0.07
125-3 59.16 58.97 -0.33 58.57 -1.00
150-1 69.69 67.14 -3.66 69.66 -0.04
150-2 69.38 67.41 -2.83 68.43 -1.36
150-3 68.68 68.57 -0.17 67.95 -1.07
175-1 80.38 79.98 -0.49 79.99 -0.48
175-2 78.88 78.57 -0.39 78.57 -0.39
175-3 79.86 78.56 -1.63 79.44 -0.53
200-1 91.18 91.18 0.00 91.18 0.00
200-2 90.52 89.78 -0.81 88.72 -1.98
200-3 90.42 88.76 -1.84 89.96 -0.51
225-1 102.42 98.62 -3.72 98.44 -3.89
225-2 100.66 99.39 -1.26 99.97 -0.69
225-3 100.94 100.55 -0.39 100.93 -0.02

in the direction of being close to each other owing to the
selected actions. The optimal heuristic for a large problem
size is more complex, as the individual structures with more
terminals and functions easily represent useful information
about the candidates. The priority ranking generated in this
way enables the construction of efficient teams by selecting
suitable candidates from a vast pool of options.

5) Effect of the ratio between skills and positions on
algorithm performance: We also analyze the impact of the
proportional relationship between the number of different skill
requirements and the number of positions on the efficiency
values of the algorithm-generated solutions. Figure 12 shows
the comparison of team efficiency results for multiple instances
with different number ratios skills to positions (denoted as
S/P). The ratio of skills to positions affects the difficulty of
solving the problem to some extent. A higher ratio of skills to
positions means more selectivity in the choice of candidates
available for team formation, leading to a larger solution space
for the problem. The difficulty of selecting candidates who
meet the requirements increases accordingly.

6) Discussion: The above experiments comprehensively
evaluate the performance of the proposed algorithm in solving
TFP-PJM problems, using various GP algorithms, construction
heuristic algorithms, and search algorithms for comparison.
For example, the learning time of the RL-GP algorithm is
less than half that of other GP algorithms, and the efficiency
of the solution obtained by the RL-GP algorithm is also
improved when compared with the two construction heuristics.
In conclusion, the heuristic can be used to aid decision-

making in generating team formation solutions in practical
problem scenarios. However, the randomness of the search
can make a big difference in the depth of the generated high-
quality individuals. In general, the heuristic with small depth
has a strong generalization ability, but may not necessarily
yield the most efficient teams. Conversely, the heuristic with
large depth tends to obtain good planning performance in
individual instances, but may not be effective in dealing with
all situations. Therefore, the effect of the depth and frequency
of the same terminal or function in the structure of GP-
generated individuals on the results should be further analyzed
in further studies. Additionally, some effective information
about individuals can be directly applied to other individuals’
learning strategies through transfer, which can also be a
promising direction for future research.

VI. CONCLUSION

When using reinforcement learning-assisted genetic pro-
gramming to solve the team formation problem, we propose a
population ensemble strategy that includes four search modes,
and use reinforcement learning methods for search pattern
selection, balancing the exploration and exploitation of popula-
tion search. In addition, a K-Nearest Neighbor surrogate model
is used in order to quickly evaluate the performance of iterative
search for newly generated populations. The surrogate model
is updated online based on the acquired information during
the rule learning process to improve the model prediction
accuracy. Extensive experiments have demonstrated that RL-
GP requires significantly less time, between 1/5 to 1/10 of
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(a) Results for instances with 25 positions
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(b) Results for instances with 50 positions
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(c) Results for instances with 75 positions
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(d) Results for instances with 100 positions
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(e) Results for instances with 125 positions
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(f) Results for instances with 150 positions
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(g) Results for instances with 175 positions
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(h) Results for instances with 200 positions
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(i) Results for instances with 225 positions

Fig. 9: Comparison results of RL-GP with construction heuristic algorithms

Fig. 10: Good heuristic example of creating a team with 100
positions

the time taken by other GP methods, to complete the learning
process. Moreover, the obtained team formation rules gener-
ated by RL-GP outperform the constructed heuristic algorithm
used for comparison in the experiments. In addition, some
experiments show that RL-GP can generate team formation

Fig. 11: Good heuristic example of creating a team with 200
positions

solutions that are either equivalent to or superior to those
generated by the genetic algorithm and variable neighborhood
search algorithm.

In the future, we will explore more complex team formation
problems, such as multi-team formation and online adjustment
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TABLE III: Comparison results of RL-GP with IGA and VNS

Instance RL-GP IGA VNS

Best Ave Gap (%) Best Ave Gap (%)

25-1 14.50 14.50 14.39 0.00 13.01 10.75 -10.30
25-2 14.75 14.75 14.44 0.00 11.06 10.72 -25.01
25-3 14.50 13.86 13.70 -4.43 12.30 11.56 -15.14
50-1 25.02 24.83 24.09 -0.75 24.08 21.73 -3.73
50-2 24.65 25.16 24.21 2.04 23.48 22.61 -4.78
50-3 25.02 24.94 24.05 -0.33 22.57 22.23 -9.77
75-1 37.66 37.72 36.54 0.15 32.82 30.87 -12.86
75-2 37.66 36.74 36.22 -2.44 33.41 33.25 -11.29
75-3 36.86 36.74 35.70 -0.35 33.32 32.59 -9.61
100-1 47.55 46.93 45.28 -1.30 42.99 41.91 -9.59
100-2 47.48 46.89 45.21 -1.24 44.99 41.71 -5.25
100-3 47.51 47.48 45.35 -0.07 43.58 41.78 -8.27
125-1 59.16 59.08 57.67 -0.15 54.52 53.94 -7.84
125-2 58.68 59.21 57.17 0.90 51.80 50.07 -11.74
125-3 59.16 58.20 56.83 -1.63 53.23 50.21 -10.02
150-1 69.69 68.29 67.43 -2.02 63.89 61.70 -8.33
150-2 69.38 69.03 67.76 -0.49 64.08 62.66 -7.64
150-3 68.68 69.73 67.70 1.53 66.75 62.75 -2.82
175-1 80.38 80.38 79.09 0.00 76.70 75.33 -4.57
175-2 78.88 78.94 78.33 0.07 74.80 72.71 -5.17
175-3 79.86 79.72 78.53 -0.18 74.58 72.02 -6.61
200-1 91.18 90.42 88.62 -0.83 82.81 80.00 -9.17
200-2 90.52 89.78 88.89 -0.81 84.08 83.50 -7.11
200-3 90.42 90.66 88.95 0.26 84.56 82.16 -6.48
225-1 102.42 102.42 99.33 0.00 90.58 89.31 -11.56
225-2 100.66 100.99 99.74 0.33 95.70 93.10 -4.93
225-3 100.94 100.93 99.92 -0.02 94.24 92.55 -6.64
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(a) Results for instances with 25 positions
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(b) Results for instances with 50 positions
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(c) Results for instances with 75 positions

Fig. 12: Results of the influence of different S/P ratios

of team formation schemes, and the constraints in the model
will consider more factors. Furthermore, it is also worthwhile
to explore the genetic programming algorithm combined with
other methods such as data mining, ensemble learning, and
transfer learning in further depth. This will further improve
the performance and applicability of the genetic programming
algorithm and effectively deal with more complex combinato-
rial optimization problems.
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